I am regressing real estate price against distance from a rail station (distance variables are two dummy variables; half km and onekm). Can anyone help explain the difference between the p-values of the variables of interest (halfkm and onekm) when using the log form and the level form of the dependent variable? Furthermore, what should we use as the dependent variable the lvel form or the log form? (Regression results of the two models are shown below) Apologies for the messy result I cant upload an image.
Clarification: For the level form regression: both halfkm and onekm are significant while the log form yields: insignificant halfkm and significant onekm
1st model(level form):
reg realestateprice improvements area area2 jobsaccessible jobswithin jobpop barangaypopulation halfkm onekm commercial misc , robust
Linear regression Number of obs = 4436
F( 11, 4424) = 76.18
Prob > F = 0.0000
R-squared = 0.4609
Root MSE = 2.3e+07
------------------------------------------------------------------------------------
| Robust
realestateprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------- -----------------------------
improvements | 1.173872 .1393172 8.43 0.000 .9007405 1.447003
area | 36781.77 9161.338 4.01 0.000 18820.96 54742.58
area2 | -.81506 .6277304 -1.30 0.194 -2.045726 .4156057
jobsaccessible | 12.73107 5.022244 2.53 0.011 2.884964 22.57719
jobswithin | 169.8118 37.36524 4.54 0.000 96.55724 243.0664
jobpop | -227163.1 121080.6 -1.88 0.061 -464541.6 10215.43
barangaypopulation | -15.09364 11.23772 -1.34 0.179 -37.12519 6.937906
halfkm | 7584262 3160256 2.40 0.016 1388578 1.38e+07
onekm | -2790965 844281.5 -3.31 0.001 -4446180 -1135751
commercial | 2348497 3034705 0.77 0.439 -3601043 8298038
misc | 5697798 9687808 0.59 0.556 -1.33e+07 2.47e+07
_cons | -1.40e+07 4193190 -3.34 0.001 -2.22e+07 -5786588
------------------------------------------------------------------------------------
. reg lprice improvements area area2 jobsaccessible jobswithin jobpop barangaypopulation halfkm onekm commercial misc , robust
Linear regression Number of obs = 4436
F( 11, 4424) = 172.15
Prob > F = 0.0000
R-squared = 0.5233
Root MSE = .71524
------------------------------------------------------------------------------------
| Robust
lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
improvements | 8.36e-09 7.87e-09 1.06 0.288 -7.07e-09 2.38e-08
area | .0015044 .0000942 15.96 0.000 .0013196 .0016891
area2 | -6.68e-08 7.44e-09 -8.97 0.000 -8.13e-08 -5.22e-08
jobsaccessible | 1.67e-06 8.85e-08 18.81 0.000 1.49e-06 1.84e-06
jobswithin | 4.38e-06 7.03e-07 6.23 0.000 3.00e-06 5.75e-06
jobpop | .0156883 .0030317 5.17 0.000 .0097447 .0216319
barangaypopulation | -2.91e-07 3.19e-07 -0.91 0.363 -9.17e-07 3.35e-07
halfkm | .0281292 .0533367 0.53 0.598 -.0764374 .1326959
onekm | -.0862971 .0364874 -2.37 0.018 -.1578306 -.0147635
commercial | .558586 .0640047 8.73 0.000 .4331047 .6840673
misc | .2639745 .0957014 2.76 0.006 .0763519 .4515971
_cons | 13.86445 .0414546 334.45 0.000 13.78318 13.94573
------------------------------------------------------------------------------------
https://imgur.com/p1tpIff - Regression Result with level form
https://imgur.com/lpggYq1 - Regression Result wiht log form
Clarification: For the level form regression: both halfkm and onekm are significant while the log form yields: insignificant halfkm and significant onekm
1st model(level form):
reg realestateprice improvements area area2 jobsaccessible jobswithin jobpop barangaypopulation halfkm onekm commercial misc , robust
Linear regression Number of obs = 4436
F( 11, 4424) = 76.18
Prob > F = 0.0000
R-squared = 0.4609
Root MSE = 2.3e+07
------------------------------------------------------------------------------------
| Robust
realestateprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------- -----------------------------
improvements | 1.173872 .1393172 8.43 0.000 .9007405 1.447003
area | 36781.77 9161.338 4.01 0.000 18820.96 54742.58
area2 | -.81506 .6277304 -1.30 0.194 -2.045726 .4156057
jobsaccessible | 12.73107 5.022244 2.53 0.011 2.884964 22.57719
jobswithin | 169.8118 37.36524 4.54 0.000 96.55724 243.0664
jobpop | -227163.1 121080.6 -1.88 0.061 -464541.6 10215.43
barangaypopulation | -15.09364 11.23772 -1.34 0.179 -37.12519 6.937906
halfkm | 7584262 3160256 2.40 0.016 1388578 1.38e+07
onekm | -2790965 844281.5 -3.31 0.001 -4446180 -1135751
commercial | 2348497 3034705 0.77 0.439 -3601043 8298038
misc | 5697798 9687808 0.59 0.556 -1.33e+07 2.47e+07
_cons | -1.40e+07 4193190 -3.34 0.001 -2.22e+07 -5786588
------------------------------------------------------------------------------------
. reg lprice improvements area area2 jobsaccessible jobswithin jobpop barangaypopulation halfkm onekm commercial misc , robust
Linear regression Number of obs = 4436
F( 11, 4424) = 172.15
Prob > F = 0.0000
R-squared = 0.5233
Root MSE = .71524
------------------------------------------------------------------------------------
| Robust
lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
improvements | 8.36e-09 7.87e-09 1.06 0.288 -7.07e-09 2.38e-08
area | .0015044 .0000942 15.96 0.000 .0013196 .0016891
area2 | -6.68e-08 7.44e-09 -8.97 0.000 -8.13e-08 -5.22e-08
jobsaccessible | 1.67e-06 8.85e-08 18.81 0.000 1.49e-06 1.84e-06
jobswithin | 4.38e-06 7.03e-07 6.23 0.000 3.00e-06 5.75e-06
jobpop | .0156883 .0030317 5.17 0.000 .0097447 .0216319
barangaypopulation | -2.91e-07 3.19e-07 -0.91 0.363 -9.17e-07 3.35e-07
halfkm | .0281292 .0533367 0.53 0.598 -.0764374 .1326959
onekm | -.0862971 .0364874 -2.37 0.018 -.1578306 -.0147635
commercial | .558586 .0640047 8.73 0.000 .4331047 .6840673
misc | .2639745 .0957014 2.76 0.006 .0763519 .4515971
_cons | 13.86445 .0414546 334.45 0.000 13.78318 13.94573
------------------------------------------------------------------------------------
https://imgur.com/p1tpIff - Regression Result with level form
https://imgur.com/lpggYq1 - Regression Result wiht log form
Comment