estat ic after fmm with vce(cluster clustname) gives wrong results for the values of AIC and BIC, or at least results I can't make sense of. I don't think it's using the correct value for the number of model parameters (k) which enters the formulae for AIC and BIC. fmm without vce(cluster clustname) gives results I can understand. In the example code and results below, I expect k=7 in the fmm 2 example and k=11 in the fmm 3 example. Yet estat ic reports and uses k=4 in both cases. This does not make sense to me, but maybe there's something I don't understand. I know there's an issue of what n to use in such situations but I didn't think there was any question about what k should be. All insight would be greatly appreciated.
Code for a working example is below. The log of results from that example follows the code.
Code for a working example is below. The log of results from that example follows the code.
Code:
sysuse auto keep if rep78!=. fmm 2, vce(cluster rep78): regress price mpg estat ic fmm 3, vce(cluster rep78): regress price mpg estat ic
Code:
. sysuse auto (1978 Automobile Data) . keep if rep78!=. (5 observations deleted) . fmm 2, vce(cluster rep78): regress price mpg <snip> Finite mixture model Number of obs = 69 Log pseudolikelihood = -606.22679 (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.Class | (base outcome) -------------+---------------------------------------------------------------- 2.Class | _cons | .8585405 .3083115 2.78 0.005 .254261 1.46282 ------------------------------------------------------------------------------ Class : 1 Response : price Model : regress (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | mpg | -311.329 43.72171 -7.12 0.000 -397.022 -225.636 _cons | 15687.98 1236.496 12.69 0.000 13264.5 18111.47 -------------+---------------------------------------------------------------- var(e.price)| 6207549 1423945 3959712 9731430 ------------------------------------------------------------------------------ Class : 2 Response : price Model : regress (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | mpg | -75.80155 28.06208 -2.70 0.007 -130.8022 -20.80088 _cons | 6385.969 527.5238 12.11 0.000 5352.041 7419.896 -------------+---------------------------------------------------------------- var(e.price)| 479575.3 131351.7 280362.3 820339.9 ------------------------------------------------------------------------------ . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 69 . -606.2268 4 1220.454 1229.39 ----------------------------------------------------------------------------- Note: N=Obs used in calculating BIC; see [R] BIC note. . fmm 3, vce(cluster rep78): regress price mpg <snip> Finite mixture model Number of obs = 69 Log pseudolikelihood = -602.64093 (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.Class | (base outcome) -------------+---------------------------------------------------------------- 2.Class | _cons | -.6605901 .6277077 -1.05 0.293 -1.890875 .5696943 -------------+---------------------------------------------------------------- 3.Class | _cons | .7093667 .2373561 2.99 0.003 .2441572 1.174576 ------------------------------------------------------------------------------ Class : 1 Response : price Model : regress (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | mpg | -405.1241 44.44051 -9.12 0.000 -492.2259 -318.0223 _cons | 17374.85 1203.793 14.43 0.000 15015.46 19734.24 -------------+---------------------------------------------------------------- var(e.price)| 6044366 1732961 3445922 1.06e+07 ------------------------------------------------------------------------------ Class : 2 Response : price Model : regress (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | mpg | -23.73611 1.001633 -23.70 0.000 -25.69927 -21.77294 _cons | 6437.194 114.627 56.16 0.000 6212.529 6661.859 -------------+---------------------------------------------------------------- var(e.price)| 53423.12 13336.43 32751.95 87140.74 ------------------------------------------------------------------------------ Class : 3 Response : price Model : regress (Std. Err. adjusted for 5 clusters in rep78) ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- price | mpg | -47.62128 28.06867 -1.70 0.090 -102.6349 7.39229 _cons | 5535.232 737.4024 7.51 0.000 4089.95 6980.514 -------------+---------------------------------------------------------------- var(e.price)| 275264.8 69759.3 167507.4 452342.5 ------------------------------------------------------------------------------ . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 69 . -602.6409 4 1213.282 1222.218 ----------------------------------------------------------------------------- Note: N=Obs used in calculating BIC; see [R] BIC note.
Comment