Below I ran the code and got the error message "type mismatch ". What is causing this error message and how can I resolve it. Unfortunately I'm not permitted to upload my data.
. global xlist income2 income3 num_child1 num_child3 age_y35 age_y68 age_y911 age_y1214 age_y1517
.
. tobit yc_clothing_new $xlist [aweight = finlwt21] if hw_kids & age_young_member < 16, ll coefl
Refining starting values:
Grid node 0: log likelihood = -134363.44
Fitting full model:
Iteration 0: log likelihood = -134363.44
Iteration 1: log likelihood = -133266.12
Iteration 2: log likelihood = -133211.49
Iteration 3: log likelihood = -133211.21
Iteration 4: log likelihood = -133211.21
Tobit regression Number of obs = 20,588
Uncensored = 15,054
Limits: lower = 0 Left-censored = 5,534
upper = +inf Right-censored = 0
LR chi2(9) = 1376.86
Prob > chi2 = 0.0000
Log likelihood = -133211.21 Pseudo R2 = 0.0051
----------------------------------------------------------------------------------------
yc_clothing_new | Coef. Legend
-----------------------+----------------------------------------------------------------
income2 | 207.5969 _b[income2]
income3 | 542.2358 _b[income3]
num_child1 | -297.51 _b[num_child1]
num_child3 | 135.2216 _b[num_child3]
age_y35 | -395.4306 _b[age_y35]
age_y68 | -415.3662 _b[age_y68]
age_y911 | -389.5229 _b[age_y911]
age_y1214 | -587.762 _b[age_y1214]
age_y1517 | -636.838 _b[age_y1517]
_cons | 607.0668 _b[_cons]
-----------------------+----------------------------------------------------------------
var(e.yc_clothing_new)| 1442668 _b[/var(e.yc_clothing_new)]
----------------------------------------------------------------------------------------
.
. tobcm
type mismatch
r(109);
.
. global xlist income2 income3 num_child1 num_child3 age_y35 age_y68 age_y911 age_y1214 age_y1517
.
. tobit yc_clothing_new $xlist [aweight = finlwt21] if hw_kids & age_young_member < 16, ll coefl
Refining starting values:
Grid node 0: log likelihood = -134363.44
Fitting full model:
Iteration 0: log likelihood = -134363.44
Iteration 1: log likelihood = -133266.12
Iteration 2: log likelihood = -133211.49
Iteration 3: log likelihood = -133211.21
Iteration 4: log likelihood = -133211.21
Tobit regression Number of obs = 20,588
Uncensored = 15,054
Limits: lower = 0 Left-censored = 5,534
upper = +inf Right-censored = 0
LR chi2(9) = 1376.86
Prob > chi2 = 0.0000
Log likelihood = -133211.21 Pseudo R2 = 0.0051
----------------------------------------------------------------------------------------
yc_clothing_new | Coef. Legend
-----------------------+----------------------------------------------------------------
income2 | 207.5969 _b[income2]
income3 | 542.2358 _b[income3]
num_child1 | -297.51 _b[num_child1]
num_child3 | 135.2216 _b[num_child3]
age_y35 | -395.4306 _b[age_y35]
age_y68 | -415.3662 _b[age_y68]
age_y911 | -389.5229 _b[age_y911]
age_y1214 | -587.762 _b[age_y1214]
age_y1517 | -636.838 _b[age_y1517]
_cons | 607.0668 _b[_cons]
-----------------------+----------------------------------------------------------------
var(e.yc_clothing_new)| 1442668 _b[/var(e.yc_clothing_new)]
----------------------------------------------------------------------------------------
.
. tobcm
type mismatch
r(109);
.
Comment