Dear Stata users/expert,
I am estimating a growth curve model with cubic form of age and here is my code and result:
mixed cesd9w ctage1 c.ctage1#c.ctage1 c.ctage1#c.ctage1#c.ctage1 || aid: ctage1 if `f1'==1, cov(un)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -83309.993
Iteration 1: log likelihood = -83295.59
Iteration 2: log likelihood = -83295.541
Iteration 3: log likelihood = -83295.541
Computing standard errors:
Mixed-effects ML regression Number of obs = 31,081
Group variable: aid Number of groups = 9,988
Obs per group:
min = 1
avg = 3.1
max = 4
Wald chi2(3) = 351.81
Log likelihood = -83295.541 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------------------
cesd9w | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------------+----------------------------------------------------------------
ctage1 | .3591828 .0396421 9.06 0.000 .2814856 .4368799
|
c.ctage1#c.ctage1 | -.0561205 .0045555 -12.32 0.000 -.0650492 -.0471918
|
c.ctage1#c.ctage1#c.ctage1 | .0020714 .0001519 13.64 0.000 .0017737 .002369
|
_cons | 4.616075 .0987931 46.72 0.000 4.422444 4.809705
--------------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
aid: Unstructured |
var(ctage1) | .0318016 .0020758 .0279826 .0361417
var(_cons) | 8.674551 .2836199 8.136104 9.248634
cov(ctage1,_cons) | -.3120697 .0214446 -.3541003 -.270039
-----------------------------+------------------------------------------------
var(Residual) | 7.877672 .0976526 7.688582 8.071411
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 4467.41 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
How can I test if var(ctage1) with .032 and var(_cons) with 8.67 are significant.
When I read Raudenbush and Bryk's book titled "Hierarchical Linear Models", I found that they presented test results for random effects (Table 6.1 on page165).
I wonder anyone can help me doing this type of test.
Thanks,
Alice
I am estimating a growth curve model with cubic form of age and here is my code and result:
mixed cesd9w ctage1 c.ctage1#c.ctage1 c.ctage1#c.ctage1#c.ctage1 || aid: ctage1 if `f1'==1, cov(un)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -83309.993
Iteration 1: log likelihood = -83295.59
Iteration 2: log likelihood = -83295.541
Iteration 3: log likelihood = -83295.541
Computing standard errors:
Mixed-effects ML regression Number of obs = 31,081
Group variable: aid Number of groups = 9,988
Obs per group:
min = 1
avg = 3.1
max = 4
Wald chi2(3) = 351.81
Log likelihood = -83295.541 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------------------
cesd9w | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------------+----------------------------------------------------------------
ctage1 | .3591828 .0396421 9.06 0.000 .2814856 .4368799
|
c.ctage1#c.ctage1 | -.0561205 .0045555 -12.32 0.000 -.0650492 -.0471918
|
c.ctage1#c.ctage1#c.ctage1 | .0020714 .0001519 13.64 0.000 .0017737 .002369
|
_cons | 4.616075 .0987931 46.72 0.000 4.422444 4.809705
--------------------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
aid: Unstructured |
var(ctage1) | .0318016 .0020758 .0279826 .0361417
var(_cons) | 8.674551 .2836199 8.136104 9.248634
cov(ctage1,_cons) | -.3120697 .0214446 -.3541003 -.270039
-----------------------------+------------------------------------------------
var(Residual) | 7.877672 .0976526 7.688582 8.071411
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 4467.41 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
How can I test if var(ctage1) with .032 and var(_cons) with 8.67 are significant.
When I read Raudenbush and Bryk's book titled "Hierarchical Linear Models", I found that they presented test results for random effects (Table 6.1 on page165).
I wonder anyone can help me doing this type of test.
Thanks,
Alice
Comment