Hi Folks,
I have a three level mixed model being analyzed in Stata 14.1, where observations are recorded at level 2 multiple times over the study period. The level 1 term is a region. The residual intercepts seem to be important based on the first result [with sizable var(_cons)] terms. However, in the second model, where I include a relevant random slope in the 2nd level, the var(_cons) appears insignificant (see below). How do I explain this? Does it mean the difference in timelag at each level 2 explains all of the random variation for each level 2 observation? I also see that the level 1 residual constant is diminished quite a bit too when I add that random slope. I am not sure what to make of it. Thanks!
I have a three level mixed model being analyzed in Stata 14.1, where observations are recorded at level 2 multiple times over the study period. The level 1 term is a region. The residual intercepts seem to be important based on the first result [with sizable var(_cons)] terms. However, in the second model, where I include a relevant random slope in the 2nd level, the var(_cons) appears insignificant (see below). How do I explain this? Does it mean the difference in timelag at each level 2 explains all of the random variation for each level 2 observation? I also see that the level 1 residual constant is diminished quite a bit too when I add that random slope. I am not sure what to make of it. Thanks!
Code:
. eststo a1b: mixed dtwch timelag perc_drought /// > riv_km2 popden_c100 alt_avg1000 if absdtwchtime<400 /// > ||basinid: ||id2:, mle Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -192190.45 Iteration 1: log likelihood = -192189.6 Iteration 2: log likelihood = -192189.6 Computing standard errors: Mixed-effects ML regression Number of obs = 46,334 ------------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+-------------------------------------------- basinid | 26 120 1,782.1 6,175 id2 | 3,791 1 12.2 72 ------------------------------------------------------------- Wald chi2(5) = 164.35 Log likelihood = -192189.6 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ dtwch | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- timelag | .1940898 .0235906 8.23 0.000 .147853 .2403266 perc_drought | .0168127 .0027138 6.20 0.000 .0114938 .0221317 riv_km2 | .0238919 .0098938 2.41 0.016 .0045003 .0432835 popden_c100 | -.0540279 .0694508 -0.78 0.437 -.190149 .0820932 alt_avg1000 | -.0443424 .3004287 -0.15 0.883 -.6331718 .544487 _cons | -1.456768 1.45866 -1.00 0.318 -4.315689 1.402152 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ basinid: Identity | var(_cons) | 2.456454 1.407536 .7990503 7.55167 -----------------------------+------------------------------------------------ id2: Identity | var(_cons) | 196.8926 11.71573 175.2186 221.2477 -----------------------------+------------------------------------------------ var(Residual) | 197.1276 1.542398 194.1276 200.1739 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(2) = 0.00 Prob > chi2 = 1.0000
Code:
. eststo a1a: mixed dtwch timelag perc_drought /// > riv_km2 popden_c100 alt_avg1000 if absdtwchtime<400 /// > ||basinid: ||id2:timelag, mle Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -188998.98 Iteration 1: log likelihood = -188876.63 Iteration 2: log likelihood = -188875.85 Iteration 3: log likelihood = -188875.85 Computing standard errors: Mixed-effects ML regression Number of obs = 46,334 ------------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+-------------------------------------------- basinid | 26 120 1,782.1 6,175 id2 | 3,791 1 12.2 72 ------------------------------------------------------------- Wald chi2(5) = 70.57 Log likelihood = -188875.85 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ dtwch | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- timelag | .2846827 .0531741 5.35 0.000 .1804633 .3889021 perc_drought | .0128998 .0026217 4.92 0.000 .0077614 .0180382 riv_km2 | .0022632 .003836 0.59 0.555 -.0052552 .0097815 popden_c100 | -.0242854 .0279246 -0.87 0.384 -.0790167 .0304458 alt_avg1000 | .0094631 .1238841 0.08 0.939 -.2333454 .2522715 _cons | -.147752 .5954296 -0.25 0.804 -1.314773 1.019268 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ basinid: Identity | var(_cons) | .3887261 .3092099 .0817637 1.848106 -----------------------------+------------------------------------------------ id2: Independent | var(timelag) | 5.54817 .2302261 5.114797 6.018263 var(_cons) | 3.74e-11 2.53e-11 9.92e-12 1.41e-10 -----------------------------+------------------------------------------------ var(Residual) | 177.1193 1.247506 174.6911 179.5814 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 5839.85 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.
Comment