Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • xtnbreg, re - loglikelihood discontinuous region encountered (not so for conditional or unconditional fe)

    Dear Statalists,
    Sorry in advance for the long message, there are few Stata output that I need to include for clarity.
    I am dealing with a panel dataset in which I want to estimate the territories' patenting activity on the basis of some performance indicators. I have a balanced panel dataset of 32 towns for 14 years. Giving the features of my dependent variable, I am using a negative binomial model, and I want to exploit the longitudinal feature of the data.

    I have successfully ran the model with some selected independent variables as a poisson (non panel), negative binomial (non panel), unconditional possion fixed effect (glm command), unconditional negative binomial fixed effect (glm command) , conditional poisson fixed effect (xtpoisson, fe), conditional negative binomial fixed effect (xtnbreg, fe) models, random poisson model (xtpoisson, re). This is why I found it strange when I could not get any results from the negative binomial random effect (xtnbreg, re) model.
    I post here the - xtnbreg, fe -, the - xtpoisson, re - and the - xtnbreg, re - codes, together with some of the output:
    PHP Code:
    *Negative binomialconditional fixed effect

    xtnbreg SIPO_Pat ICT nospec cap_on_emp Nr_individual l1
    .Exports Nr_foreign l1.Grad_sec_sch prepost*, fe
    note
    post_2005 omitted because of collinearity

    Iteration 0
    :   log likelihood = -8759.6522  (not concave)
    ...
    Iteration 24:  log likelihood = -2481.9586  (not concave)
    Iteration 25:  log likelihood = -2356.2314  
    Iteration 26
    :  log likelihood = -2219.1313  
    Iteration 27
    :  log likelihood = -2199.4056  
    Iteration 28
    :  log likelihood = -2198.8179  
    Iteration 29
    :  log likelihood = -2198.8158  
    Iteration 30
    :  log likelihood = -2198.8158  

    Conditional FE negative binomial regression     Number of obs      
    =       416
    Group variable
    TOWN_ID                         Number of groups   =        32

                                                    Obs per group
    min =        13
                                                                   avg 
    =      13.0
                                                                   max 
    =        13

                                                    Wald chi2
    (10)      =   1405.40
    Log likelihood  
    = -2198.8158                    Prob chi2        =    0.0000

    --------------------------------------------------------------------------------------------------
                       
    SIPO_Pat_Appl |      Coef.   StdErr.      z    P>|z|     [95ConfInterval]
    ---------------------------------+----------------------------------------------------------------
                                 
    ICT |  -.1426851    .082568    -1.73   0.084    -.3045154    .0191452
                              nospec 
    |  -.2190276   .0679435    -3.22   0.001    -.3521944   -.0858607
                 cap_on_employee_ads 
    |   .0012927   .0013914     0.93   0.353    -.0014343    .0040197
    Nr_individual_comm_hous_enterpri 
    |   1.60e-06   1.60e-06     0.99   0.320    -1.55e-06    4.74e-06
                                     
    |
                        
    Exports_10th |
                                 
    L1. |   4.31e-07   2.13e-07     2.03   0.043     1.41e-08    8.48e-07
                                     
    |
             
    Nr_foreign_funded_firms |   .0002219   .0001048     2.12   0.034     .0000164    .0004274
                                     
    |
                    
    Grad_sec_sch_pop |
                                 
    L1. |   7.776467   2.578928     3.02   0.003      2.72186    12.83107
                                     
    |
                            
    pre_2005 |  -.8859314    .081811   -10.83   0.000    -1.046278   -.7255848
                           post_2005 
    |          0  (omitted)
                           
    post_2008 |   .6558707   .0543943    12.06   0.000     .5492597    .7624817
                           post_2011 
    |   .2776123    .049691     5.59   0.000     .1802197    .3750049
                               _cons 
    |   1.541551   .1224057    12.59   0.000      1.30164    1.781461
    --------------------------------------------------------------------------------------------------




    *
    Poissonrandom effect
    xtpoisson SIPO_Pat ICT nospec cap_on_emp Nr_individual l1
    .Exports Nr_foreign l1.Grad_sec_sch prepost*, re

    Fitting Poisson model
    :

    Iteration 0:   log likelihood =  -31973.28  
    Iteration 1
    :   log likelihood = -30094.781  
    Iteration 2
    :   log likelihood = -30089.312  
    Iteration 3
    :   log likelihood = -30089.312  

    Fitting full model
    :

    Iteration 0:   log likelihood = -17908.496  
    Iteration 1
    :   log likelihood = -11730.035  
    Iteration 2
    :   log likelihood = -11570.704  
    Iteration 3
    :   log likelihood = -11545.794  
    Iteration 4
    :   log likelihood = -11543.718  
    Iteration 5
    :   log likelihood = -11543.687  
    Iteration 6
    :   log likelihood = -11543.687  

    Random
    -effects Poisson regression               Number of obs      =       416
    Group variable
    TOWN_ID                         Number of groups   =        32

    Random effects u_i 
    Gamma                      Obs per groupmin =        13
                                                                   avg 
    =      13.0
                                                                   max 
    =        13

                                                    Wald chi2
    (10)      =  55875.28
    Log likelihood  
    = -11543.687                    Prob chi2        =    0.0000

    --------------------------------------------------------------------------------------------------
                       
    SIPO_Pat_Appl |      Coef.   StdErr.      z    P>|z|     [95ConfInterval]
    ---------------------------------+----------------------------------------------------------------
                                 
    ICT |  -.1028622   .0140955    -7.30   0.000    -.1304888   -.0752356
                              nospec 
    |  -.1438835    .012527   -11.49   0.000     -.168436    -.119331
                 cap_on_employee_ads 
    |   .0039368   .0002509    15.69   0.000      .003445    .0044287
    Nr_individual_comm_hous_enterpri 
    |   1.81e-06   2.57e-07     7.04   0.000     1.31e-06    2.32e-06
                                     
    |
                        
    Exports_10th |
                                 
    L1. |   3.20e-07   3.04e-08    10.53   0.000     2.61e-07    3.80e-07
                                     
    |
             
    Nr_foreign_funded_firms |   .0002136   .0000139    15.32   0.000     .0001863    .0002409
                                     
    |
                    
    Grad_sec_sch_pop |
                                 
    L1. |   11.57073   .4436957    26.08   0.000      10.7011    12.44036
                                     
    |
                            
    pre_2005 |  -1.116745   .0140921   -79.25   0.000    -1.144365   -1.089125
                           post_2008 
    |    .739617   .0080947    91.37   0.000     .7237516    .7554824
                           post_2011 
    |   .1076197   .0078306    13.74   0.000     .0922719    .1229674
                               _cons 
    |   5.178147   .1205244    42.96   0.000     4.941924    5.414371
    ---------------------------------+----------------------------------------------------------------
                            /
    lnalpha |  -.7870015   .2338881                     -1.245414   -.3285894
    ---------------------------------+----------------------------------------------------------------
                               
    alpha |   .4552077   .1064676                      .2878218    .7199386
    --------------------------------------------------------------------------------------------------
    Likelihood-ratio test of alpha=0chibar2(01) =  3.7e+04 Prob>=chibar2 0.000


    *
    Negative Binomial random effect
     xtnbreg SIPO_Pat ICT nospec cap_on_emp Nr_individual l1
    .Exports Nr_foreign l1.Grad_sec_sch prepost*, re

    Fitting negative binomial 
    (constant dispersionmodel:

    Iteration 0:   log likelihood =  -31973.28  
    Iteration 1
    :   log likelihood = -30094.781  
    Iteration 2
    :   log likelihood = -30089.312  
    Iteration 3
    :   log likelihood = -30089.312  

    Iteration 0
    :   log likelihood = -50019.689  
    Iteration 1
    :   log likelihood = -6160.8259  
    Iteration 2
    :   log likelihood = -4620.1901  (backed up)
    Iteration 3:   log likelihood = -2957.8093  
    Iteration 4
    :   log likelihood = -2928.1561  
    Iteration 5
    :   log likelihood = -2926.5559  
    Iteration 6
    :   log likelihood = -2926.5532  
    Iteration 7
    :   log likelihood = -2926.5532  

    Iteration 0
    :   log likelihood = -2926.5532  (not concave)
    Iteration 1:   log likelihood = -2825.9998  
    Iteration 2
    :   log likelihood = -2699.4153  
    Iteration 3
    :   log likelihood = -2674.8744  
    Iteration 4
    :   log likelihood = -2672.2632  
    Iteration 5
    :   log likelihood = -2672.2598  
    Iteration 6
    :   log likelihood = -2672.2598  

    Fitting full model
    :

    Iteration 0:   log likelihood = -8326.6712  (not concave)
    Iteration 1:   log likelihood = -5825.2809  (not concave)
    Iteration 2:   log likelihood = -5782.6175  
    Iteration 3
    :   log likelihood = -4181.4293  (not concave)
    Iteration 4:   log likelihood = -3677.2887  
    Iteration 5
    :   log likelihood = -3110.3723  (not concave)
    Iteration 6:   log likelihood = -3103.9361  (not concave)
    Iteration 7:   log likelihood =  -3096.597  (not concave)
    Iteration 8:   log likelihood = -3096.0307  (not concave)
    Iteration 9:   log likelihood = -3095.7554  (not concave)
    ... 
    At first, the loglikelhood function yelded a non concave function. I waited up to the iteration 1380 but it did not seem to get to a solution. Therefore I tried to use various solutions that I found in the forum:
    - using the - difficult - option
    - changing the algorithm technique to the dfp and bfgs ones (I did not go through the bhhh as it reported it does not work with d2 evaluators).

    The only "improvement" that I could get is that the problem is no longer the not concave function but the message "loglikelihood discontinuous region encountered":

    PHP Code:
    xtnbreg SIPO_Pat ICT nospec cap_on_emp Nr_individual l1.Exports Nr_foreign l1.Grad_sec_sch prepost*, re difficult technique(nr dfp bfgs)
    notepost_2005 omitted because of collinearity

    Fitting negative binomial 
    (constant dispersionmodel:

    (
    setting technique to nr)
    Iteration 0:   log likelihood =  -31973.28  
    Iteration 1
    :   log likelihood = -30094.781  
    Iteration 2
    :   log likelihood = -30089.312  
    Iteration 3
    :   log likelihood = -30089.312  

    (setting technique to nr)
    Iteration 0:   log likelihood = -50019.689  
    Iteration 1
    :   log likelihood = -6160.8259  
    Iteration 2
    :   log likelihood = -4620.1901  (backed up)
    Iteration 3:   log likelihood = -2957.8093  
    Iteration 4
    :   log likelihood = -2928.1561  
    (switching technique to dfp)
    Iteration 5:   log likelihood = -2926.5559  
    Iteration 6
    :   log likelihood = -2926.5532  
    Iteration 7
    :   log likelihood = -2926.5532  

    (setting technique to nr)
    Iteration 0:   log likelihood = -2926.5532  (not concave)
    Iteration 1:   log likelihood = -2825.9998  
    Iteration 2
    :   log likelihood = -2699.4153  
    Iteration 3
    :   log likelihood = -2674.8744  
    Iteration 4
    :   log likelihood = -2672.2632  
    (switching technique to dfp)
    DFP stepping has contractedresetting DFP Hessian
    Iteration 5
    :   log likelihood = -2672.2598  
    DFP stepping has contracted
    resetting DFP Hessian
    Iteration 6
    :   log likelihood = -2672.2598  (backed up)
    DFP stepping has contractedresetting DFP Hessian
    Iteration 7
    :   log likelihood = -2672.2598  (backed up)
    DFP stepping has contractedresetting DFP Hessian
    Iteration 8
    :   log likelihood = -2672.2598  (backed up)
    DFP stepping has contractedresetting DFP Hessian
    Iteration 9
    :   log likelihood = -2672.2598  (backed up)
    (
    switching technique to bfgs)
    BFGS stepping has contractedresetting BFGS Hessian
    Iteration 10
    :  log likelihood = -2672.2598  (backed up)
    BFGS stepping has contractedresetting BFGS Hessian
    Iteration 11
    :  log likelihood = -2672.2598  (backed up)
    BFGS stepping has contractedresetting BFGS Hessian
    Iteration 12
    :  log likelihood = -2672.2598  (backed up)
    BFGS stepping has contractedresetting BFGS Hessian
    Iteration 13
    :  log likelihood = -2672.2598  (backed up)
    BFGS stepping has contractedresetting BFGS Hessian
    Iteration 14
    :  log likelihood = -2672.2598  (backed up)
    (
    switching technique to nr)
    Iteration 15:  log likelihood = -2672.2598  (backed up)

    Fitting full model:

    (
    setting technique to nr)
    Iteration 0:   log likelihood = -8326.6715  (not concave)
    Iteration 1:   log likelihood = -5825.2839  (not concave)
    Iteration 2:   log likelihood =  -5782.621  
    Iteration 3
    :   log likelihood = -4181.1842  (not concave)
    Iteration 4:   log likelihood = -3677.1854  
    (switching technique to dfp)
    DFP stepping has contractedresetting DFP Hessian
    Iteration 5
    :   log likelihood = -3110.5124  
    cannot compute an improvement 
    -- discontinuous region encountered
    r
    (430); 
    I can only run the model if I omit some specific variables:

    PHP Code:
     xtnbreg SIPO_Pat ICT nospec cap_on_emp Nr_foreign l1.Grad_sec_sch prepost*, re difficult technique(nr dfp bfgs)
    notepost_2005 omitted because of collinearity

    Fitting negative binomial 
    (constant dispersionmodel:

    (
    setting technique to nr)
    Iteration 0:   log likelihood = -38755.247  
    Iteration 1
    :   log likelihood = -37842.441  
    Iteration 2
    :   log likelihood =  -37840.06  
    Iteration 3
    :   log likelihood =  -37840.06  

    (setting technique to nr)
    Iteration 0:   log likelihood = -50019.689  
    Iteration 1
    :   log likelihood = -6160.8259  
    Iteration 2
    :   log likelihood = -4620.1901  (backed up)
    Iteration 3:   log likelihood = -2957.8093  
    Iteration 4
    :   log likelihood = -2928.1561  
    (switching technique to dfp)
    Iteration 5:   log likelihood = -2926.5559  
    Iteration 6
    :   log likelihood = -2926.5532  
    Iteration 7
    :   log likelihood = -2926.5532  

    (setting technique to nr)
    Iteration 0:   log likelihood = -2926.5532  
    Iteration 1
    :   log likelihood = -2786.4174  (backed up)
    Iteration 2:   log likelihood = -2743.1568  
    Iteration 3
    :   log likelihood = -2723.0039  
    Iteration 4
    :   log likelihood = -2722.8331  
    (switching technique to dfp)
    Iteration 5:   log likelihood =  -2722.833  

    Fitting full model
    :

    (
    setting technique to nr)
    Iteration 0:   log likelihood = -9353.5423  (not concave)
    Iteration 1:   log likelihood = -2769.5786  (not concave)
    Iteration 2:   log likelihood = -2637.0027  (not concave)
    Iteration 3:   log likelihood = -2519.5827  
    Iteration 4
    :   log likelihood = -2512.9767  
    (switching technique to dfp)
    Iteration 5:   log likelihood = -2503.1936  
    Iteration 6
    :   log likelihood = -2502.3942  
    Iteration 7
    :   log likelihood = -2502.1686  
    Iteration 8
    :   log likelihood = -2502.1571  
    Iteration 9
    :   log likelihood = -2502.1567  
    (switching technique to bfgs)
    Iteration 10:  log likelihood = -2502.1567  

    Random
    -effects negative binomial regression     Number of obs      =       416
    Group variable
    TOWN_ID                         Number of groups   =        32

    Random effects u_i 
    Beta                       Obs per groupmin =        13
                                                                   avg 
    =      13.0
                                                                   max 
    =        13

                                                    Wald chi2
    (8)       =   1378.00
    Log likelihood  
    = -2502.1567                    Prob chi2        =    0.0000

    -----------------------------------------------------------------------------------------
              
    SIPO_Pat_Appl |      Coef.   StdErr.      z    P>|z|     [95ConfInterval]
    ------------------------+----------------------------------------------------------------
                        
    ICT |  -.1073468   .0817717    -1.31   0.189    -.2676165    .0529228
                     nospec 
    |  -.2141712   .0666093    -3.22   0.001    -.3447231   -.0836194
        cap_on_employee_ads 
    |   .0008254   .0014677     0.56   0.574    -.0020512    .0037021
    Nr_foreign_funded_firms 
    |   .0003357   .0001039     3.23   0.001      .000132    .0005394
                            
    |
           
    Grad_sec_sch_pop |
                        
    L1. |   8.398023   2.525613     3.33   0.001     3.447912    13.34813
                            
    |
                   
    pre_2005 |  -.9107259   .0804405   -11.32   0.000    -1.068386   -.7530655
                  post_2005 
    |          0  (omitted)
                  
    post_2008 |   .6540546   .0534153    12.24   0.000     .5493626    .7587466
                  post_2011 
    |   .3172153   .0452615     7.01   0.000     .2285043    .4059262
                      _cons 
    |   1.553998   .1206744    12.88   0.000     1.317481    1.790516
    ------------------------+----------------------------------------------------------------
                      /
    ln_r |   .8607036   .2442626                      .3819576     1.33945
                      
    /ln_s |   4.170516   .2849279                      3.612068    4.728964
    ------------------------+----------------------------------------------------------------
                          
    |   2.364824   .5776382                       1.46515    3.816942
                          s 
    |   64.74885   18.44875                      37.04256    113.1783
    -----------------------------------------------------------------------------------------
    Likelihood-ratio test vspooledchibar2(01) =   441.35 Prob>=chibar2 0.000 
    There seem to be an issue with two variables (named Nr_individual and Nr_foreign). What I do not understand is why the code is able to run with fixed effects and not with the random effect model. Why is it so? should I suspect that something is not right in the fixed effect model either? Is there any other way to overcome the problem apart from those I already tried? Shall I try some transformation with the variables that are causing trouble?

    Thanks to anyone that will help!

  • #2
    Dear Chiara,

    I am sorry to answer your question with another question, but why are you estimating all these models? Most of the models you are estimating are quite fragile in the sense that they depend on unrealistic assumptions. Unless you are interested in computing probabilities of events, I suggest you just use Poisson regression with fixed effects.

    Best regards,

    Joao

    Comment


    • #3
      Dear Joao,
      thank you for your reply.
      i am running all these models for two reasons: first, the outcome variable is very overdispersed, nor the xtpoisson fe seems to deal properly with it (while the negative binomial seems toto work properly). Secondly,it seems that the outcome variable shows more within than between variability, so i supect that a fixed effect would not fit thethe data properly. Do you think xtpoisson fe is preferable anyway? Also it would be great if you had some specific references on this, i am using mainly the contributions of Hilbe.

      thank you,
      c

      Comment


      • #4
        Dear Chiara,

        The over-dispersion is a serious problem only if you want to compute probabilities of events. In most cases practitioners only want to estimate the conditional mean and in that case it is better to have a reliable estimator of the mean than an unreliable estimator that purportedly accounts for over-dispersion. The FE Poisson regression is remarkably robust, as shown by

        Wooldridge, J. M. (1999): Distribution-Free Estimation of Some Nonlinear Panel Data Models. Journal of Econometrics (90), pp. 77-97

        and, for me, that is the perfect workhorse for these problems. The NB estimator and any RE estimator will depended on very strong distributional assumptions about the nature of the over-dispersion and therefore are unreliable.

        Best wishes,

        Joao

        Comment

        Working...
        X