Dear readers,
I am working on a panel data and I am trying to decide between OLS, (one or two-way) fixed effects and random effects.
These are the characteristics of the panel data:
The first thing that I do is to run the Hausman test. The results seem to support for fixed effects. Prob>chi2 < 0.05
Secondly I test for time-fixed effects. The results seem to support for fixed-time effects, but not for team-fixed effects.
At this point, it seems that I should keep only the time-dummy variables in my model. Is it so? Do I need to run --regress-- with the option --vce(cluster teamid)-- now? Thank you.
I am working on a panel data and I am trying to decide between OLS, (one or two-way) fixed effects and random effects.
These are the characteristics of the panel data:
Code:
xtset teamid year panel variable: teamid (unbalanced) time variable: year, 1990 to 2005 delta: 1 unit
Code:
xtreg y x1 x2 x3 x4 x5 x6 x7, fe estimates store fixed xtreg y x1 x2 x3 x4 x5 x6 x7, re estimates store random hausman fixed random
Code:
Test: Ho: difference in coefficients not systematic chi2(7) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 19.67 Prob>chi2 = 0.0063
Code:
xtreg y x1 x2 x3 x4 x5 x6 x7 i.year, fe Fixed-effects (within) regression Number of obs = 423 Group variable: teamid Number of groups = 29 R-sq: Obs per group: within = 0.4175 min = 9 between = 0.9225 avg = 14.6 overall = 0.5200 max = 15 F(21,373) = 12.73 corr(u_i, Xb) = 0.3649 Prob > F = 0.0000 -------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- x1 | .2976339 .0514635 5.78 0.000 .1964388 .3988289 x2 | -1.197834 .6025895 -1.99 0.048 -2.382733 -.0129358 x3 | -1.004244 1.703068 -0.59 0.556 -4.353061 2.344574 x4 | 14.66767 5.020646 2.92 0.004 4.795354 24.53999 x5 | -2.157621 .4948095 -4.36 0.000 -3.130586 -1.184655 x6 | -.8719717 .3822189 -2.28 0.023 -1.623546 -.1203977 x7 | 9.237686 9.208618 1.00 0.316 -8.869627 27.345 | year | 1992 | 2.259566 2.68975 0.84 0.401 -3.02941 7.548541 1993 | .312609 2.843719 0.11 0.913 -5.279122 5.90434 1994 | .029145 2.904487 0.01 0.992 -5.682077 5.740367 1995 | .756507 2.997573 0.25 0.801 -5.137754 6.650768 1996 | 7.127056 3.009425 2.37 0.018 1.20949 13.04462 1997 | 3.209303 3.092813 1.04 0.300 -2.872233 9.290839 1998 | .056752 3.131287 0.02 0.986 -6.100435 6.213939 1999 | -8.521511 3.113896 -2.74 0.007 -14.6445 -2.398519 2000 | 5.357031 3.118691 1.72 0.087 -.7753893 11.48945 2001 | -2.571675 3.084095 -0.83 0.405 -8.636068 3.492718 2002 | -3.055465 3.086275 -0.99 0.323 -9.124144 3.013214 2003 | -3.455438 3.112955 -1.11 0.268 -9.57658 2.665704 2004 | -.4980288 3.185596 -0.16 0.876 -6.762007 5.765949 2005 | -.3646745 3.818328 -0.10 0.924 -7.872823 7.143474 | _cons | 39.25244 10.12028 3.88 0.000 19.35249 59.1524 ---------------------+---------------------------------------------------------------- sigma_u | 2.9698973 sigma_e | 9.4862393 rho | .08926603 (fraction of variance due to u_i) -------------------------------------------------------------------------------------- F test that all u_i=0: F(28, 373) = 0.98 Prob > F = 0.5004 . testparm i.year ( 1) 1992.year = 0 ( 2) 1993.year = 0 ( 3) 1994.year = 0 ( 4) 1995.year = 0 ( 5) 1996.year = 0 ( 6) 1997.year = 0 ( 7) 1998.year = 0 ( 8) 1999.year = 0 ( 9) 2000.year = 0 (10) 2001.year = 0 (11) 2002.year = 0 (12) 2003.year = 0 (13) 2004.year = 0 (14) 2005.year = 0 F( 14, 373) = 4.21 Prob > F = 0.0000
Code:
regress y x1 x2 x3 x4 x5 x6 x7 i.year, vce(cluster teamid)
Comment