Dear all,
I'm Using 14.0 and Panel Data Wave 3-8.
I’d like to test the following Hypotheses (I'm sorry it's phrased better in German) :
H1a: Parents who change their relationship status have a lower Parent-Child-Relationshipquality than parents who are in a stable relationship
H1a2: Mothers who change their relationship status have a lower P-C-R than Fathers with a changing relationship status
H0: Parents who change their relationship status don't have a lower P-C-R than parents who are in a stable relationship
H1b: The change of the parent's relationship status has a negativ effect on the P-C-R.
Therefore the Housman-Test showed to use FE.
How can I show if there is a difference between the control groups (test h1a)? Like you can see in the dataex the variable which shows the change of the relationship status 'transition' is a dummy 0= no change and 1 change. If I am right stata only counts if there is a change over time. That means that I can't say anything about parents in a stable relationship. Maybe I have made a mistake with my thinking..
To test h1b the model looks like this:
To test h1a2 it looks like this:
Thank you in advance!
Guest
I'm Using 14.0 and Panel Data Wave 3-8.
I’d like to test the following Hypotheses (I'm sorry it's phrased better in German) :
H1a: Parents who change their relationship status have a lower Parent-Child-Relationshipquality than parents who are in a stable relationship
H1a2: Mothers who change their relationship status have a lower P-C-R than Fathers with a changing relationship status
H0: Parents who change their relationship status don't have a lower P-C-R than parents who are in a stable relationship
H1b: The change of the parent's relationship status has a negativ effect on the P-C-R.
Therefore the Housman-Test showed to use FE.
How can I show if there is a difference between the control groups (test h1a)? Like you can see in the dataex the variable which shows the change of the relationship status 'transition' is a dummy 0= no change and 1 change. If I am right stata only counts if there is a change over time. That means that I can't say anything about parents in a stable relationship. Maybe I have made a mistake with my thinking..
To test h1b the model looks like this:
Code:
xtreg bezqual_kind transition depressive selfesteem fsit_a inc28 move job7 warmth_pacs monitor_pacs negcomm_pacs inconsist_pacs cwarmth_cao cmonitor_cao age cagey nkidsliv, fe
Code:
Fixed-effects (within) regression Number of obs = 4,117 Group variable: id Number of groups = 1,245 R-sq: Obs per group: within = 0.3046 min = 1 between = 0.4853 avg = 3.3 overall = 0.4369 max = 6 F(16,2856) = 78.19 corr(u_i, Xb) = 0.1317 Prob > F = 0.0000 -------------------------------------------------------------------------------- bezqual_kind | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------+---------------------------------------------------------------- transition | .0294374 .0310101 0.95 0.343 -.0313671 .0902419 depressive | -.0044196 .0230625 -0.19 0.848 -.0496405 .0408013 selfesteem | .0075242 .0123574 0.61 0.543 -.0167062 .0317546 fsit_a | .0204509 .0106924 1.91 0.056 -.0005146 .0414164 inc28 | .0070363 .0045094 1.56 0.119 -.0018058 .0158784 move | .0100518 .016546 0.61 0.544 -.0223914 .042495 job7 | .0001806 .000748 0.24 0.809 -.0012862 .0016473 warmth_pacs | .0323705 .0202993 1.59 0.111 -.0074322 .0721733 monitor_pacs | .0603774 .0192297 3.14 0.002 .0226718 .098083 negcomm_pacs | -.0551816 .0175485 -3.14 0.002 -.0895907 -.0207725 inconsist_pacs | -.0291047 .0175303 -1.66 0.097 -.063478 .0052685 cwarmth_cao | .3980474 .0158171 25.17 0.000 .3670333 .4290614 cmonitor_cao | .0960683 .0102511 9.37 0.000 .075968 .1161686 age | -.0240684 .0246416 -0.98 0.329 -.0723856 .0242488 cagey | -.0143854 .0244586 -0.59 0.556 -.0623437 .0335729 nkidsliv | -.0074075 .0258401 -0.29 0.774 -.0580746 .0432596 _cons | 2.477777 .7244326 3.42 0.001 1.057314 3.898241 ---------------+---------------------------------------------------------------- sigma_u | .35771454 sigma_e | .33527174 rho | .53235169 (fraction of variance due to u_i) -------------------------------------------------------------------------------- F test that all u_i=0: F(1244, 2856) = 2.79 Prob > F = 0.0000
To test h1a2 it looks like this:
Code:
xtreg bezqual_kind transition depressive selfesteem fsit_a inc28 move job7 warmth_pacs monitor_pacs negcomm_pacs inconsist_pacs cwarmth_cao cmonitor_cao age cagey nkidsliv if sex_gen==1, fe // Fathers
Code:
Fixed-effects (within) regression Number of obs = 1,229 Group variable: id Number of groups = 379 R-sq: Obs per group: within = 0.3412 min = 1 between = 0.4695 avg = 3.2 overall = 0.4500 max = 6 F(16,834) = 26.99 corr(u_i, Xb) = 0.1753 Prob > F = 0.0000 -------------------------------------------------------------------------------- bezqual_kind | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------+---------------------------------------------------------------- transition | .0628663 .0812616 0.77 0.439 -.096635 .2223676 depressive | .0190544 .0483386 0.39 0.694 -.0758253 .1139341 selfesteem | -.0288062 .0224402 -1.28 0.200 -.0728522 .0152397 fsit_a | .0302963 .0198431 1.53 0.127 -.008652 .0692445 inc28 | .0079084 .0085265 0.93 0.354 -.0088276 .0246444 move | -.0260721 .0299562 -0.87 0.384 -.0848705 .0327263 job7 | .0016187 .0013151 1.23 0.219 -.0009627 .0042 warmth_pacs | .0150044 .0317076 0.47 0.636 -.0472316 .0772405 monitor_pacs | .0787379 .0315432 2.50 0.013 .0168245 .1406513 negcomm_pacs | -.0538126 .0322375 -1.67 0.095 -.1170888 .0094636 inconsist_pacs | .0033006 .0298674 0.11 0.912 -.0553236 .0619248 cwarmth_cao | .360789 .0258298 13.97 0.000 .3100899 .4114881 cmonitor_cao | .0986978 .0155511 6.35 0.000 .0681738 .1292218 age | -.0185679 .0442744 -0.42 0.675 -.1054701 .0683344 cagey | -.0355808 .0429529 -0.83 0.408 -.1198892 .0487277 nkidsliv | -.0188827 .0535458 -0.35 0.724 -.1239831 .0862176 _cons | 2.651687 1.357058 1.95 0.051 -.0119634 5.315338 ---------------+---------------------------------------------------------------- sigma_u | .37657764 sigma_e | .32255129 rho | .57681792 (fraction of variance due to u_i) -------------------------------------------------------------------------------- F test that all u_i=0: F(378, 834) = 3.17 Prob > F = 0.0000
Code:
xtreg bezqual_kind transition depressive selfesteem fsit_a inc28 move job7 warmth_pacs monitor_pacs negcomm_pacs inconsist_pacs cwarmth_cao cmonitor_cao age cagey nkidsliv if sex_gen==2, fe // Mothers
Code:
Fixed-effects (within) regression Number of obs = 2,888 Group variable: id Number of groups = 866 R-sq: Obs per group: within = 0.2952 min = 1 between = 0.4800 avg = 3.3 overall = 0.4248 max = 6 F(16,2006) = 52.51 corr(u_i, Xb) = 0.0933 Prob > F = 0.0000 -------------------------------------------------------------------------------- bezqual_kind | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------+---------------------------------------------------------------- transition | .0232803 .0339835 0.69 0.493 -.0433664 .0899271 depressive | -.0061684 .026529 -0.23 0.816 -.0581957 .0458589 selfesteem | .0223192 .0148798 1.50 0.134 -.0068623 .0515007 fsit_a | .014227 .0128077 1.11 0.267 -.0108907 .0393448 inc28 | .0066106 .0053558 1.23 0.217 -.003893 .0171141 move | .0250636 .0198881 1.26 0.208 -.01394 .0640671 job7 | -.0002981 .0009132 -0.33 0.744 -.002089 .0014927 warmth_pacs | .0403631 .0262955 1.53 0.125 -.0112062 .0919324 monitor_pacs | .0538022 .0242272 2.22 0.026 .006289 .1013154 negcomm_pacs | -.0557938 .0209878 -2.66 0.008 -.096954 -.0146336 inconsist_pacs | -.0452463 .0216741 -2.09 0.037 -.0877524 -.0027401 cwarmth_cao | .4170839 .0199913 20.86 0.000 .377878 .4562898 cmonitor_cao | .0959373 .0135344 7.09 0.000 .0693944 .1224802 age | -.029885 .0298448 -1.00 0.317 -.0884151 .0286451 cagey | -.0019201 .02986 -0.06 0.949 -.0604799 .0566397 nkidsliv | -.0005025 .0298102 -0.02 0.987 -.0589647 .0579597 _cons | 2.450835 .8617133 2.84 0.004 .7608886 4.140782 ---------------+---------------------------------------------------------------- sigma_u | .35222723 sigma_e | .34047672 rho | .51695837 (fraction of variance due to u_i) -------------------------------------------------------------------------------- F test that all u_i=0: F(865, 2006) = 2.61 Prob > F = 0.0000
Thank you in advance!
Guest
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long(id cid) byte(wave sex_gen age cagey nkidsliv) double job7 byte inc28 float(transition bezqual_kind depressive selfesteem cwarmth_cao cmonitor_cao warmth_pacs monitor_pacs negcomm_pacs inconsist_pacs fsit_a move) 111000 111203 3 2 39 9 2 0 3 0 3.833333 1 5 4.6666665 4 4.6666665 3.75 1.6666666 2.5 5 1 111000 111203 4 2 40 10 2 0 3 1 4.5 2.2 4.6666665 5 4.5 4.6666665 4.25 3.666667 3.5 4 1 111000 111203 5 2 41 11 2 0 0 0 3 2.6 3 3.333333 2.5 4 3.25 2 3.5 4.5 0 111000 111203 6 2 42 12 1 3 5 1 3.166667 1.1 4.6666665 4.3333335 2.5 4.6666665 3.5 2.3333333 2.5 4.5 0 111000 111203 7 2 43 13 1 40 5 1 3.833333 1.5 5 4.6666665 3.5 4 3.75 1.6666666 2.75 5 0 111000 111203 8 2 44 14 1 0 5 0 4 1.4 4.6666665 5 3 4 3.5 1.6666666 2.75 5 0 1300000 1300202 3 1 37 13 1 40 8 0 4 1.4 4.6666665 5 5 4.6666665 4.75 2.3333333 1.5 1 1 1300000 1300202 4 1 38 14 1 50 6 0 4.3333335 2.3 4 4.6666665 4 4.6666665 4.75 2 2 2 0 3902000 3902201 5 1 42 9 3 42 3 0 4.3333335 1.4 4.3333335 4.3333335 4 4.6666665 4.5 2 2.75 3.5 1 3902000 3902201 6 1 42 9 3 38 4 0 4 1.4 4.3333335 5 3.5 4.6666665 4.5 2.666667 2.5 3 0 3902000 3902201 7 1 43 10 3 43 3 0 3.833333 1.2 4 4.3333335 4.5 4.6666665 4.25 2.3333333 2.25 4 0 3902000 3902201 8 1 44 11 3 38 3 0 3.833333 1.5 4.3333335 5 4 4.6666665 4.25 2.3333333 2.5 4 0 4835000 4835201 5 2 41 13 1 40 5 0 3 2 4.6666665 3.666667 1.5 4 3.5 2.3333333 3.25 3 1 4858000 4858201 5 2 29 9 1 25 6 0 4.3333335 1 5 5 5 5 4.25 1 1.25 3 1 4858000 4858201 6 2 30 11 1 30 9 1 3.666667 1.5 5 4 5 5 4.25 3.333333 2.5 4 0 6151000 6151201 5 2 40 8 2 25 8 0 4.1666665 1.2 4.3333335 4.6666665 4 4.3333335 5 2.3333333 2 1 1 6151000 6151201 6 2 41 9 2 20 9 0 4.1666665 1.2 4.3333335 4.3333335 5 4.6666665 4.75 2.3333333 2 1 0 6151000 6151201 7 2 42 10 2 30 9 0 3.833333 1.3 4.3333335 3.333333 5 5 3.75 3.333333 1.75 1 0 6151000 6151201 8 2 43 11 2 25 8 0 4.1666665 1.1 4.3333335 4.6666665 4.5 5 4.75 2.666667 1.75 1.5 0 6519000 6519201 4 2 41 10 1 40 5 0 4.3333335 2 2.666667 5 3 4 3.5 2.666667 3.25 4 1 6519000 6519201 5 2 41 11 1 35 5 1 3.5 1.9 3 5 4 4 3.25 3.333333 3 3 0 6519000 6519201 6 2 43 12 1 42 5 0 3.5 2.1 3.666667 4.3333335 4 4 3.75 3 3.5 3 0 6519000 6519201 7 2 44 13 1 40 7 0 3 2.1 3 4.6666665 3 4 4 2.3333333 3.5 2 0 6519000 6519201 8 2 45 14 1 40 7 0 2.833333 2.5 3.333333 4.6666665 3.5 4 3.75 3 4 1.5 0 8948000 8948201 3 2 38 9 1 48.5 5 0 2.5 1.4 3 4.3333335 3 4.3333335 4.5 2 2.25 4 1 8948000 8948201 4 2 39 10 1 50 5 0 3.166667 1.8 3 4.6666665 3 4.6666665 4 2 2.25 3.5 0 8948000 8948201 5 2 40 11 1 50 6 0 3.166667 1.8 3.666667 4.3333335 3.5 4.6666665 3.75 2 2.5 3.5 0 8948000 8948201 6 2 41 12 1 50 6 0 3 1.6 3 3.333333 3 4.3333335 3.5 2 2.5 3.5 0 8948000 8948201 7 2 42 13 1 50 6 0 2.833333 1.6 3.666667 4 3.5 4 3 2 2.25 4 0 8948000 8948201 8 2 43 14 1 50 5 0 2.1666667 1.6 4.3333335 3.666667 3 4 3.25 2 1.75 3.5 0 9657000 9657201 5 2 41 8 3 0 9 0 4.1666665 1.8 3.666667 4 4 4.3333335 5 4 3.5 1.5 1 9657000 9657201 8 2 44 11 3 9 10 0 3.5 1.9 4 4.3333335 3.5 4.3333335 4.75 3 3.5 1 0 9917000 9917201 5 1 39 8 2 45 9 0 4.6666665 1.1 4.6666665 5 4.5 4 4 3 2.5 2 1 9917000 9917201 6 1 40 9 2 45 9 0 4 1.3 4.3333335 4.6666665 4.5 4 4 2.666667 2.25 2 0 9917000 9917201 8 1 42 11 2 50 10 0 4.833333 1.2 4.3333335 5 5 4.3333335 4.25 3.333333 2.25 2 0 10208000 10208201 3 1 38 8 2 40 6 0 4.5 1.7 2.666667 4.3333335 5 4 4 2.3333333 2.25 2.5 1 10208000 10208201 4 1 39 9 2 40 6 0 4 1.6 4.3333335 4.6666665 4.5 4 3.5 2 2.5 3 0 10208000 10208201 5 1 40 9 2 40 7 0 3.833333 1.6 4.3333335 4.6666665 5 4 4 2.3333333 2 2 0 10208000 10208201 6 1 41 11 2 40 7 0 3.833333 1.7 4 4 3.5 4 3.75 2.3333333 2.25 2.5 0 10208000 10208201 7 1 42 12 2 40 7 0 3.333333 1.7 4.3333335 4 3.5 4 3.75 2.666667 2.5 1 0 10208000 10208201 8 1 43 13 2 40 7 0 3.666667 1.6 4 4 4 4 4.25 2.666667 2.25 2 0 10957000 10957202 3 2 39 13 2 40 1 0 2.666667 1.1 5 3.333333 2 4 3.25 2 2.75 3.5 1 10957000 10957202 4 2 40 14 2 40 0 0 2.5 1.1 4.3333335 3.666667 2.5 4 3.75 1.6666666 4 3.5 0 10957000 10957202 5 2 41 15 2 41 3 0 3.166667 1.3 5 4.6666665 2 4.3333335 3.5 1.6666666 3.5 3.5 0 11295000 11295201 4 2 38 8 2 21 7 0 3.5 2.7 4 4.6666665 4.5 4.6666665 4.75 2 2.75 3.5 1 11295000 11295201 5 2 39 9 2 30 7 0 3.333333 2.1 4.6666665 4 4.5 5 4.5 2.3333333 2.75 4 1 11295000 11295201 6 2 40 10 2 42 4 0 3.833333 2.7 3 4.3333335 3.5 4.6666665 4.75 2 2.75 4 0 11295000 11295201 7 2 41 11 2 40 8 0 3.666667 2.4 4 4 4 4.6666665 4.25 1.6666666 2.25 3 0 11295000 11295201 8 2 42 12 2 30 7 0 4.3333335 2.1 4.3333335 4.6666665 5 4 4.75 2 2.75 3 0 12266000 12266201 3 1 37 12 1 50 6 0 3.166667 2 3 3.666667 5 3.333333 4.25 3 3.25 4 1 12266000 12266201 6 1 40 14 1 48 3 0 3.333333 2.3 3.333333 4 4.5 4.3333335 4 2.666667 4.75 5 0 12471000 12471201 6 1 31 9 2 34 9 0 2.5 1.8 4 4.3333335 4.5 3.666667 3.75 3 3 3 1 12490000 12490201 3 2 38 8 3 0 6 0 4.1666665 1.7 4 4.3333335 4.5 3.333333 5 3.333333 2.75 3 1 12490000 12490201 4 2 39 9 3 0 7 0 4.3333335 1.8 5 5 5 3 4.75 4 3.5 2 0 12490000 12490201 5 2 40 10 3 27 8 0 4 1.9 4.3333335 4.6666665 3 3 4.5 4 3.5 3 0 12490000 12490201 6 2 41 11 3 28 7 0 3.333333 1.7 4 4 5 4 3.75 3 3 3 0 12490000 12490201 7 2 42 12 3 28 8 0 2.666667 1.4 3.666667 3.666667 4 5 4.75 2.3333333 3 2 0 12490000 12490201 8 2 43 13 3 18 3 0 3.166667 1.3 4.3333335 4.3333335 5 3 3.75 3 3 2 0 13345000 13345202 3 2 39 11 2 0 8 0 4.1666665 1.5 3.666667 4.6666665 5 4 4.5 2 2.75 3 1 13588000 13588201 6 1 40 8 3 35 5 0 3.833333 1.7 4 4.3333335 4 5 4.5 2.3333333 3 3 1 13588000 13588201 7 1 41 9 3 35 5 0 4.5 1.6 2.666667 5 4 5 5 1.3333334 2 3 0 13937000 13937201 6 1 41 8 2 50 8 0 3.5 1.2 4.3333335 4.6666665 5 5 4.5 2 2.25 2 1 13937000 13937201 8 1 43 10 2 70 2 0 3.333333 1.3 3.666667 4 4 5 4.5 1.6666666 2 2.5 0 14722000 14722201 3 1 38 9 2 42 5 0 3.666667 1.3 4.3333335 3.333333 5 3.666667 3.5 3 2.25 3 1 14722000 14722201 4 1 39 10 2 39 7 0 4.6666665 1.5 4.6666665 5 4 4 3.75 2.666667 2.25 3 0 14722000 14722201 5 1 40 11 2 45 6 0 3.666667 1.4 4.6666665 3.666667 3 3 3.5 2 1.25 3 0 14722000 14722201 6 1 41 12 2 48 5 0 3.333333 1.4 4.3333335 3.666667 2.5 3.666667 3.75 2.3333333 1.25 1.5 0 14722000 14722201 7 1 42 13 2 45 7 0 3.5 1.4 4.3333335 3.333333 3 4 3 2.3333333 1.5 2 0 14722000 14722201 8 1 43 14 2 45 8 0 3.5 1.5 5 3.666667 3 3.333333 2.75 2.3333333 1.75 2 0 14898000 14898201 4 2 40 11 3 12 7 0 3.666667 1.4 4.3333335 4.3333335 5 4.3333335 4.25 3 3 2 1 14898000 14898201 6 2 42 13 3 15 7 0 4.1666665 1.4 4.6666665 4.3333335 4 4 4 2.3333333 2 2.5 0 14902000 14902201 5 2 30 8 1 25 5 0 4.5 1.3 5 4.6666665 5 5 4.75 1.3333334 1.75 4 1 14902000 14902201 6 2 31 9 1 25 7 0 4.6666665 1.3 5 5 5 5 5 1 1.25 3.5 0 14902000 14902201 8 2 33 11 1 25 7 0 4.5 1 5 4.6666665 5 5 5 2.666667 3 3 0 15595000 15595201 4 1 40 7 2 40 9 0 4.3333335 1.1 5 5 5 4.6666665 4.75 2.3333333 2.75 2 1 15595000 15595201 5 1 41 9 2 40 9 0 4.3333335 1 5 5 5 5 4.75 2.3333333 2.25 1 0 15595000 15595201 6 1 42 10 2 45 10 0 4.5 1.2 5 5 5 5 5 2 2.25 1 0 15595000 15595201 7 1 43 11 2 45 9 0 4 1 5 4 5 4.6666665 5 2.3333333 2.5 1 0 15595000 15595201 8 1 44 12 2 50 9 0 4 1 5 4.3333335 4.5 4.6666665 4.75 2 2.75 1 0 16512000 16512202 4 1 39 10 2 38 7 0 4.1666665 1.6 4.3333335 5 5 4 5 2.666667 3 3 1 16512000 16512202 5 1 40 11 2 39 7 0 4.5 1.7 4 5 5 4 5 2.3333333 3 2.5 0 16512000 16512202 6 1 41 12 2 39 8 0 4.1666665 1.5 3.666667 5 4.5 3.666667 5 2 2.75 3 0 16512000 16512202 7 1 42 13 2 40 8 0 4 1.6 3.666667 4.6666665 5 3.666667 4.75 2.666667 3 2 0 16512000 16512202 8 1 43 14 2 42 8 0 3.833333 1.6 4 4.3333335 3.5 3.666667 5 2.3333333 3.25 2.5 0 16671000 16671201 3 2 39 10 1 36 8 0 3.333333 1.5 4.3333335 4.3333335 3 4 3.75 3 3.25 2 1 16671000 16671201 4 2 40 11 1 40 8 0 3.166667 1.3 4 3.666667 4 4 3.75 2.3333333 3 3 0 16829000 16829201 3 2 38 12 2 19.5 6 0 3.833333 2.4 3 4.3333335 4.5 3.666667 3.75 3 2.5 2 1 16829000 16829201 4 2 39 13 2 19 6 0 1.6666666 2.6 3.666667 2.3333333 3 3 3 3 2.25 2 0 16829000 16829201 5 2 40 14 2 19 0 0 2.5 2.3 3.333333 3.666667 2.5 3.333333 3.25 2.3333333 2.25 3 0 17018000 17018203 3 2 38 10 5 0 10 0 3.833333 1.2 4.3333335 4.3333335 4.5 4.3333335 3.75 3.333333 2.25 1 1 17018000 17018203 4 2 40 11 5 3 9 0 4 1.4 4.3333335 4 4 4.3333335 3.75 2.666667 1.75 1 0 17018000 17018203 5 2 41 12 5 6 10 0 3.833333 1.3 4 5 4 4 3.5 2.666667 2.25 1 0 17018000 17018203 6 2 41 13 5 0 10 0 3.666667 1.4 4.3333335 4.3333335 3 4.3333335 3.25 2.666667 2.25 1 1 17018000 17018203 7 2 43 14 5 0 10 0 4 1.5 4.3333335 5 5 4.3333335 3.5 2.3333333 2.5 1 0 17018000 17018203 8 2 43 15 5 0 8 0 4.5 1.3 4.3333335 5 3 4.3333335 3.75 3 2.75 2 1 17464000 17464202 3 2 38 9 3 0 7 0 4.833333 1.7 3.666667 5 5 4 4.5 2 2.75 2.5 1 17464000 17464202 4 2 40 11 3 0 8 0 4.1666665 1.9 2.666667 5 5 4.6666665 4.5 2.3333333 2.25 1 0 17464000 17464202 5 2 40 11 3 20 8 0 4 1.5 4 4.3333335 5 5 5 2 2.25 1.5 0 17464000 17464202 6 2 41 12 3 20 10 0 3.166667 1.4 4 3.666667 5 4 4.5 2.3333333 2.5 1 0 18011000 18011201 3 1 39 8 1 50 8 0 2.666667 1.2 4.3333335 3.666667 3.5 3.666667 3.75 3.333333 3 2 1 end label values wave WAVE_prt3 label def WAVE_prt3 3 "3 2010/11", modify label values sex_gen sex_genlbl_ac3 label def sex_genlbl_ac3 1 "1 Male", modify label def sex_genlbl_ac3 2 "2 Female", modify label values age age_ac3 label values nkidsliv nkids_ac3 label values job7 liste233_ac3 label def liste233_ac3 0 "0 Keine", modify label values inc28 liste4_ac3 label def liste4_ac3 0 "0 Sehr unzufrieden", modify label def liste4_ac3 10 "10 Sehr zufrieden", modify label values transition transition label def transition 0 "0 k. Veränderung", modify label def transition 1 "1 Veränderung", modify label values bezqual_kind bezqual_kind label values depressive depressive label def depressive 1 "1 niedrig", modify label values selfesteem selfesteem label def selfesteem 5 "5 hoch", modify label values cwarmth_cao cwarmth_cao label def cwarmth_cao 5 "5 hoch", modify label values cmonitor_cao cmonitor_cao label def cmonitor_cao 5 "5 hoch", modify label values warmth_pacs warmth_pacs label def warmth_pacs 5 "5 hoch", modify label values monitor_pacs monitor_pacs label def monitor_pacs 5 "5 hoch", modify label values negcomm_pacs negcomm_pacs label def negcomm_pacs 1 "1 niedrig", modify label values inconsist_pacs inconsist_pacs label values fsit_a fsit_a label def fsit_a 1 "1 gut", modify label def fsit_a 5 "5 weniger gut", modify label values move move label def move 0 "kein Umzug", modify label def move 1 "Umzug", modify
Comment