Dear Statalist-users,
I am using Stata 13.0 to estimate the following equation
dlogtfpt=b0+b1logtfpt-1+b2logFDI+b3log(FDI*X)+b4logX+eijt
where tfp is the total factor productivity
log is the natural logarithm
FDI is the variable of foreign presence
X is the set of control variables
and FDI*X are the interaction variables
code:
xi: xtabond2 d.ltw l.ltw l(0/2).lghor l(0/0).(lhohfd lhotg lhors
lhordf) (lgkl lgrd lgrdf lgtg lgsi lghfd i.year) if duf==0,
gmmstyle(l.ltw l2.d.ltw l.(lgkl lgtg lhohfd lghor), lag (8 8)c) gmm(lgsi,
lag(12 12)c) iv(l2.d.ltw lgrd lgrdf lghfd lhotg lhordf lhors i.year,
equation (level)) twostep robust
Stata output is:
Group variable: plantid Number of obs 46850
Time variable : year Number of groups 4685
Number of instruments = 30 Obs per group: min 10
Wald chi2(26) = 3589.87 avg 10.00
Prob > chi2 = 0.000 max 10
D.ltw Coef. Std. Err. z P>z [95% Conf. Interval]
ltw
L1. -1.377941 .0659355 -20.90 0.000 -1.507172 -1.24871
lghor
--. 0 (omitted)
L1. .0939822 .0192933 4.87 0.000 .0561681 .1317963
L2. .0190475 .0086882 2.19 0.028 .0020189 .036076
lhohfd 0 (omitted)
lhotg -.0880144 .0205217 -4.29 0.000 -.1282361 -.0477926
lhors .0279592 .0059063 4.73 0.000 .016383 .0395354
lhordf -.0139597 .0171669 -0.81 0.416 -.0476063 .0196868
lgkl .8065759 .0415438 19.42 0.000 .7251515 .8880003
lgrd 0 (omitted)
lgrdf 0 (omitted)
lgtg -.0130485 .0495371 -0.26 0.792 -.1101395 .0840425
lgsi 0 (omitted)
lghfd .370614 .0270918 13.68 0.000 .3175149 .423713
_Iyear_1998 5.372316 .4395289 12.22 0.000 4.510855 6.233776
_Iyear_1999 5.444025 .4451601 12.23 0.000 4.571527 6.316522
_Iyear_2000 5.393613 .445117 12.12 0.000 4.5212 6.266027
_Iyear_2001 5.3964 .4413826 12.23 0.000 4.531306 6.261494
_Iyear_2002 5.375868 .4400378 12.22 0.000 4.51341 6.238327
_Iyear_2003 5.396753 .4407484 12.24 0.000 4.532902 6.260604
_Iyear_2004 5.459598 .446981 12.21 0.000 4.583531 6.335665
_Iyear_2005 5.415188 .4475532 12.10 0.000 4.537999 6.292376
_Iyear_2006 5.394337 .4426592 12.19 0.000 4.526741 6.261933
_Iyear_2007 5.397805 .4430694 12.18 0.000 4.529405 6.266205
Am I correct to assume to interpret the results as the Total Factor productivity being in first differences and the independent variables being in levels, and thus the interpretation of xtabond2 output is the percentage point increase in the TFP due to a 1% increase in the independent variables?
Or, what I get is the second differences for the TFP and the first differences for the independent variables?
Thank you in advance!
Andrea Costa
I am using Stata 13.0 to estimate the following equation
dlogtfpt=b0+b1logtfpt-1+b2logFDI+b3log(FDI*X)+b4logX+eijt
where tfp is the total factor productivity
log is the natural logarithm
FDI is the variable of foreign presence
X is the set of control variables
and FDI*X are the interaction variables
code:
xi: xtabond2 d.ltw l.ltw l(0/2).lghor l(0/0).(lhohfd lhotg lhors
lhordf) (lgkl lgrd lgrdf lgtg lgsi lghfd i.year) if duf==0,
gmmstyle(l.ltw l2.d.ltw l.(lgkl lgtg lhohfd lghor), lag (8 8)c) gmm(lgsi,
lag(12 12)c) iv(l2.d.ltw lgrd lgrdf lghfd lhotg lhordf lhors i.year,
equation (level)) twostep robust
Stata output is:
Group variable: plantid Number of obs 46850
Time variable : year Number of groups 4685
Number of instruments = 30 Obs per group: min 10
Wald chi2(26) = 3589.87 avg 10.00
Prob > chi2 = 0.000 max 10
D.ltw Coef. Std. Err. z P>z [95% Conf. Interval]
ltw
L1. -1.377941 .0659355 -20.90 0.000 -1.507172 -1.24871
lghor
--. 0 (omitted)
L1. .0939822 .0192933 4.87 0.000 .0561681 .1317963
L2. .0190475 .0086882 2.19 0.028 .0020189 .036076
lhohfd 0 (omitted)
lhotg -.0880144 .0205217 -4.29 0.000 -.1282361 -.0477926
lhors .0279592 .0059063 4.73 0.000 .016383 .0395354
lhordf -.0139597 .0171669 -0.81 0.416 -.0476063 .0196868
lgkl .8065759 .0415438 19.42 0.000 .7251515 .8880003
lgrd 0 (omitted)
lgrdf 0 (omitted)
lgtg -.0130485 .0495371 -0.26 0.792 -.1101395 .0840425
lgsi 0 (omitted)
lghfd .370614 .0270918 13.68 0.000 .3175149 .423713
_Iyear_1998 5.372316 .4395289 12.22 0.000 4.510855 6.233776
_Iyear_1999 5.444025 .4451601 12.23 0.000 4.571527 6.316522
_Iyear_2000 5.393613 .445117 12.12 0.000 4.5212 6.266027
_Iyear_2001 5.3964 .4413826 12.23 0.000 4.531306 6.261494
_Iyear_2002 5.375868 .4400378 12.22 0.000 4.51341 6.238327
_Iyear_2003 5.396753 .4407484 12.24 0.000 4.532902 6.260604
_Iyear_2004 5.459598 .446981 12.21 0.000 4.583531 6.335665
_Iyear_2005 5.415188 .4475532 12.10 0.000 4.537999 6.292376
_Iyear_2006 5.394337 .4426592 12.19 0.000 4.526741 6.261933
_Iyear_2007 5.397805 .4430694 12.18 0.000 4.529405 6.266205
Am I correct to assume to interpret the results as the Total Factor productivity being in first differences and the independent variables being in levels, and thus the interpretation of xtabond2 output is the percentage point increase in the TFP due to a 1% increase in the independent variables?
Or, what I get is the second differences for the TFP and the first differences for the independent variables?
Thank you in advance!
Andrea Costa
Comment