Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpretation of xtabond2 output

    Dear Statalist-users,

    I am using Stata 13.0 to estimate the following equation

    dlogtfpt=b0+b1logtfpt-1+b2logFDI+b3log(FDI*X)+b4logX+eijt

    where tfp is the total factor productivity
    log is the natural logarithm
    FDI is the variable of foreign presence
    X is the set of control variables
    and FDI*X are the interaction variables

    code:

    xi: xtabond2 d.ltw l.ltw l(0/2).lghor l(0/0).(lhohfd lhotg lhors
    lhordf) (lgkl lgrd lgrdf lgtg lgsi lghfd i.year) if duf==0,
    gmmstyle(l.ltw l2.d.ltw l.(lgkl lgtg lhohfd lghor), lag (8 8)c) gmm(lgsi,
    lag(12 12)c) iv(l2.d.ltw lgrd lgrdf lghfd lhotg lhordf lhors i.year,
    equation (level)) twostep robust



    Stata output is:

    Group variable: plantid Number of obs 46850
    Time variable : year Number of groups 4685
    Number of instruments = 30 Obs per group: min 10
    Wald chi2(26) = 3589.87 avg 10.00
    Prob > chi2 = 0.000 max 10



    D.ltw Coef. Std. Err. z P>z [95% Conf. Interval]
    ltw
    L1. -1.377941 .0659355 -20.90 0.000 -1.507172 -1.24871
    lghor

    --. 0 (omitted)
    L1. .0939822 .0192933 4.87 0.000 .0561681 .1317963
    L2. .0190475 .0086882 2.19 0.028 .0020189 .036076

    lhohfd 0 (omitted)
    lhotg -.0880144 .0205217 -4.29 0.000 -.1282361 -.0477926
    lhors .0279592 .0059063 4.73 0.000 .016383 .0395354
    lhordf -.0139597 .0171669 -0.81 0.416 -.0476063 .0196868
    lgkl .8065759 .0415438 19.42 0.000 .7251515 .8880003
    lgrd 0 (omitted)
    lgrdf 0 (omitted)
    lgtg -.0130485 .0495371 -0.26 0.792 -.1101395 .0840425
    lgsi 0 (omitted)
    lghfd .370614 .0270918 13.68 0.000 .3175149 .423713
    _Iyear_1998 5.372316 .4395289 12.22 0.000 4.510855 6.233776
    _Iyear_1999 5.444025 .4451601 12.23 0.000 4.571527 6.316522
    _Iyear_2000 5.393613 .445117 12.12 0.000 4.5212 6.266027
    _Iyear_2001 5.3964 .4413826 12.23 0.000 4.531306 6.261494
    _Iyear_2002 5.375868 .4400378 12.22 0.000 4.51341 6.238327
    _Iyear_2003 5.396753 .4407484 12.24 0.000 4.532902 6.260604
    _Iyear_2004 5.459598 .446981 12.21 0.000 4.583531 6.335665
    _Iyear_2005 5.415188 .4475532 12.10 0.000 4.537999 6.292376
    _Iyear_2006 5.394337 .4426592 12.19 0.000 4.526741 6.261933
    _Iyear_2007 5.397805 .4430694 12.18 0.000 4.529405 6.266205



    Am I correct to assume to interpret the results as the Total Factor productivity being in first differences and the independent variables being in levels, and thus the interpretation of xtabond2 output is the percentage point increase in the TFP due to a 1% increase in the independent variables?

    Or, what I get is the second differences for the TFP and the first differences for the independent variables?

    Thank you in advance!

    Andrea Costa

  • #2
    Andrea:
    welcome to the list.
    Two asides off the main target:
    - you do not have to use -xi- prefix with -fvvarlist- notation: is old-fashioned and redundant;
    - in order to make what you typed and what Stata gave you back readable to those interested in help you out, please put all the stuff within CODE delimiters (see the FAQ on that and other relevant topics about posting more efficiently). Thanks.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Thank you Carlo. Will do.


      Kind regards,

      Andrea

      Comment


      • #4
        Dear Statalist-users,

        I am using Stata 13.0 to estimate the following equation

        dlogtfpt=b0+b1logtfpt-1+b2logFDI+b3log(FDI*X)+b4logX+eijt

        where tfp is the total factor productivity
        log is the natural logarithm
        FDI is the variable of foreign presence
        X is the set of control variables
        and FDI*X are the interaction variables


        Code:
        xtabond2 d.ltw l.ltw l(0/2).lghor l(0/0).(lhohfd lhotg lhors
        lhordf) (lgkl lgrd lgrdf lgtg lgsi lghfd i.year) if duf==0,
        gmmstyle(l.ltw l2.d.ltw l.(lgkl lgtg lhohfd lghor), lag (8 8)c) gmm(lgsi,
        lag(12 12)c) iv(l2.d.ltw lgrd lgrdf lghfd lhotg lhordf lhors i.year,
        equation (level)) twostep robust
           
        Group variable: plantid Number of obs 46850
        Time variable : year Number of groups 4685
        Number of instruments = 30 Obs per group: min 10
        Wald chi2(26) = 3589.87 avg 10.00
        Prob > chi2 = 0.000 max 10
        D.ltw Coef. Std. Err. z P>z [95% Conf. Interval]
        ltw
        L1. -1.377941 .0659355 -20.90 0.000 -1.507172 -1.24871
        lghor
        --. 0 (omitted)
        L1. .0939822 .0192933 4.87 0.000 .0561681 .1317963
        L2. .0190475 .0086882 2.19 0.028 .0020189 .036076
        lhohfd 0 (omitted)
        lhotg -.0880144 .0205217 -4.29 0.000 -.1282361 -.0477926
        lhors .0279592 .0059063 4.73 0.000 .016383 .0395354
        lhordf -.0139597 .0171669 -0.81 0.416 -.0476063 .0196868
        lgkl .8065759 .0415438 19.42 0.000 .7251515 .8880003
        lgrd 0 (omitted)
        lgrdf 0 (omitted)
        lgtg -.0130485 .0495371 -0.26 0.792 -.1101395 .0840425
        lgsi 0 (omitted)
        lghfd .370614 .0270918 13.68 0.000 .3175149 .423713
        _Iyear_1998 5.372316 .4395289 12.22 0.000 4.510855 6.233776
        _Iyear_1999 5.444025 .4451601 12.23 0.000 4.571527 6.316522
        _Iyear_2000 5.393613 .445117 12.12 0.000 4.5212 6.266027
        _Iyear_2001 5.3964 .4413826 12.23 0.000 4.531306 6.261494
        _Iyear_2002 5.375868 .4400378 12.22 0.000 4.51341 6.238327
        _Iyear_2003 5.396753 .4407484 12.24 0.000 4.532902 6.260604
        _Iyear_2004 5.459598 .446981 12.21 0.000 4.583531 6.335665
        _Iyear_2005 5.415188 .4475532 12.10 0.000 4.537999 6.292376
        _Iyear_2006 5.394337 .4426592 12.19 0.000 4.526741 6.261933
        _Iyear_2007 5.397805 .4430694 12.18 0.000 4.529405 6.266205
        Am I correct to interpret the results as the Total Factor productivity (TFP) being in first differences and the independent variables being in levels, and thus the interpretation of xtabond2 output is the percentage point increase in the TFP due to a 1% increase in the independent variables?

        Or, what I get is the second differences for the TFP and the first differences for the independent variables?

        Thank you in advance!

        Andrea Costa
        Last edited by andrea costa; 30 Aug 2017, 02:26.

        Comment

        Working...
        X