Dear All,
I have data on incidence of poisonings and I want to estimate if changes in state policy impacted incidence of poisoning. The full data is of poisonings only, so I don't observe individuals in my data who may be misusing drugs but didn't experience an incidence of poisoning. I have data for 50 US states, for 9 half years as follows:
The policy variable is 1 in a state that implemented the policy in the halfyear post policy implementation (basically an interaction term). I am debating between whether to use xtreg or xtpoisson for the diff-in-diff type of analysis. The distribution of the outcome variables I am studying is shown in the attached (Apologies for the attachment but I wasn't sure how to show the distributions using dataex). So outcomes are all non-negative, not too many excess 0s and the counts can be pretty large (exception being death). My measure of 'exposure' to poisoning from a specific drug type (eg. narcotic) is total number of individuals who experienced poisoning.
Given the distributions of the outcomes and the nature of the data, would xtreg be appropriate or xtpoisson? If xtreg would be better, how do I account for differences in sizes of states and hence differences in number of individuals being 'exposed' to poisoning. I am using the term 'exposure' in line with the option given in the xtpoisson.
Many thanks for any input.
Best,
Sumedha.
I have data on incidence of poisonings and I want to estimate if changes in state policy impacted incidence of poisoning. The full data is of poisonings only, so I don't observe individuals in my data who may be misusing drugs but didn't experience an incidence of poisoning. I have data for 50 US states, for 9 half years as follows:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str3 state float(halfyear policy) long(caseid misuse suicide illicit narc noeffect death) "AK" 1 0 42 15 15 14 29 6 0 "AK" 2 0 69 28 22 21 52 7 0 "AK" 3 0 51 14 22 9 43 13 0 "AK" 4 0 53 20 19 19 35 7 1 "AK" 5 0 53 17 21 17 37 7 1 "AK" 6 0 50 18 20 13 38 7 0 "AK" 7 0 38 14 13 7 32 6 0 "AK" 8 0 61 21 20 17 45 9 0 "AK" 9 0 44 14 13 11 35 8 0 "AL" 1 0 423 123 174 149 297 76 4 "AL" 2 0 428 143 151 153 292 69 5 "AL" 3 0 427 126 172 154 295 68 2 "AL" 4 0 408 134 169 135 300 81 2 "AL" 5 0 385 121 139 122 288 76 3 "AL" 6 0 353 110 134 83 281 53 1 "AL" 7 0 327 137 90 77 257 26 0 "AL" 8 0 320 116 90 73 257 49 0 "AL" 9 0 251 92 75 68 190 35 3 "AR" 1 0 145 47 49 25 120 28 0 "AR" 2 0 180 65 38 40 144 30 2 "AR" 3 0 127 47 42 28 100 25 1 "AR" 4 0 159 49 46 38 125 30 0 "AR" 5 0 132 40 45 25 109 27 0 "AR" 6 0 141 36 45 28 119 37 0 "AR" 7 0 157 33 53 28 135 37 0 "AR" 8 0 173 46 62 27 148 42 1 "AR" 9 0 193 48 80 36 160 37 0 "AZ" 1 0 718 240 213 239 499 88 11 "AZ" 2 0 741 255 238 238 524 86 2 "AZ" 3 0 741 270 217 250 530 76 12 "AZ" 4 0 678 218 189 179 519 108 6 "AZ" 5 0 645 232 154 173 488 83 10 "AZ" 6 0 642 211 159 210 448 74 8 "AZ" 7 0 626 210 184 234 412 68 13 "AZ" 8 0 658 211 191 207 476 88 6 "AZ" 9 0 643 240 177 218 449 82 2 "CA" 1 0 1795 621 603 625 1211 197 8 "CA" 2 0 1902 654 684 669 1284 185 4 "CA" 3 0 1866 630 655 646 1272 192 13 "CA" 4 0 1735 563 624 529 1247 194 11 "CA" 5 0 1762 566 620 566 1245 203 9 "CA" 6 0 1824 532 661 584 1277 209 12 "CA" 7 0 1865 597 652 616 1286 186 9 "CA" 8 0 1825 556 681 596 1260 187 12 "CA" 9 0 1727 562 609 615 1149 178 9 "CO" 1 0 287 95 75 86 206 69 1 "CO" 2 0 307 90 79 112 200 69 0 "CO" 3 0 292 104 69 112 188 66 3 "CO" 4 0 302 84 85 86 223 69 2 "CO" 5 0 308 92 79 123 192 77 3 "CO" 6 0 323 91 84 119 208 74 3 "CO" 7 0 361 87 89 155 211 66 5 "CO" 8 0 338 102 85 141 205 77 4 "CO" 9 0 360 116 87 175 193 78 1 "CT" 1 0 182 65 72 71 114 31 3 "CT" 2 0 186 79 68 81 110 24 1 "CT" 3 0 198 75 74 92 116 25 2 "CT" 4 0 208 75 90 89 130 20 3 "CT" 5 0 196 73 78 88 117 20 2 "CT" 6 0 243 98 98 125 132 24 4 "CT" 7 0 238 108 84 124 130 26 7 "CT" 8 0 227 102 70 111 124 26 2 "CT" 9 0 244 100 98 122 142 24 3 "DC" 1 0 57 22 18 27 32 8 2 "DC" 2 0 63 25 16 33 31 10 2 "DC" 3 0 45 22 11 22 23 11 0 "DC" 4 0 62 19 31 33 29 12 3 "DC" 5 0 86 31 40 49 40 17 1 "DC" 6 0 76 26 39 49 31 9 2 "DC" 7 0 80 27 33 47 38 10 4 "DC" 8 0 80 36 31 50 31 17 0 "DC" 9 0 70 28 26 47 27 9 0 "DE" 1 1 48 14 14 13 37 13 0 "DE" 2 1 54 18 19 19 36 10 0 "DE" 3 1 54 14 18 13 42 8 0 "DE" 4 1 57 27 18 12 46 2 0 "DE" 5 1 66 25 16 19 49 15 2 "DE" 6 1 48 21 13 14 34 5 2 "DE" 7 1 62 20 21 24 39 9 1 "DE" 8 1 77 29 26 31 50 12 3 "DE" 9 1 60 18 28 23 38 8 0 "FL" 1 0 1077 360 360 292 809 175 9 "FL" 2 0 1160 410 464 398 798 167 7 "FL" 3 0 987 325 359 285 730 145 9 "FL" 4 0 1016 342 357 282 759 186 8 "FL" 5 0 1130 380 434 385 790 168 5 "FL" 6 0 1195 424 483 422 813 187 6 "FL" 7 0 1178 403 431 392 821 196 5 "FL" 8 0 1073 331 452 356 746 183 9 "FL" 9 0 1111 402 433 431 718 185 13 end
Given the distributions of the outcomes and the nature of the data, would xtreg be appropriate or xtpoisson? If xtreg would be better, how do I account for differences in sizes of states and hence differences in number of individuals being 'exposed' to poisoning. I am using the term 'exposure' in line with the option given in the xtpoisson.
Many thanks for any input.
Best,
Sumedha.
Comment