Hello,
I am doing my research in political science. I included binary*binary interaction term in my model, and I ran margin and average margin.
First, here is my estimation result including interaction terms. I did probit model.
Probit regression Number of obs = 446
Wald chi2(15) = 146.64
Prob > chi2 = 0.0000
Log pseudolikelihood = -118.81356 Pseudo R2 = 0.4567
(Std. Err. adjusted for 179 clusters in name)
--------------------------------------------------------------------------------------
| Robust
vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
1.compete | .6167187 .3708698 1.66 0.096 -.1101727 1.34361
1.conservative | .7567618 .5191474 1.46 0.145 -.2607484 1.774272
|
conservative#compete |
1 1 | -.8386206 .483335 -1.74 0.083 -1.78594 .1086986
|
1.unsafe | -.6638056 .3788255 -1.75 0.080 -1.40629 .0786787
|
conservative#unsafe |
1 1 | -.2375732 .5869731 -0.40 0.686 -1.388019 .9128729
|
ido | .2424258 .0802953 3.02 0.003 .0850499 .3998016
seniority | -.0638672 .1477812 -0.43 0.666 -.3535131 .2257787
leggender | -.3944897 .7005009 -0.56 0.573 -1.767446 .9784669
age | .3408219 .1482007 2.30 0.021 .0503539 .6312899
edu | -.1078646 .1406759 -0.77 0.443 -.3835842 .1678551
securitylaw | .3757814 .2143941 1.75 0.080 -.0444233 .7959861
northaid | .9259885 .2543168 3.64 0.000 .4275368 1.42444
diplosecu | .3236994 .1933323 1.67 0.094 -.055225 .7026237
initialvote | -1.602286 .2539444 -6.31 0.000 -2.100008 -1.104564
addedtroops | -1.237338 .2566488 -4.82 0.000 -1.740361 -.734316
_cons | -3.624946 1.054334 -3.44 0.001 -5.691402 -1.558489
--------------------------------------------------------------------------------------
Dependent variable is vote (nay: 0, yay:1)
Conservative (non-conservative party member:0, conservative party member:1)
compete (non-competitive district:0, competitive district:1)
My hypothesis is that conservative party members are less likely vote for yay in a competitive district.
Here is the result of margin command, margin conservative#compete
Predictive margins Number of obs = 446
Model VCE : Robust
Expression : Pr(vote), predict()
--------------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
conservative#compete |
0 0 | .746918 .0430746 17.34 0.000 .6624933 .8313426
0 1 | .8395636 .0271827 30.89 0.000 .7862865 .8928407
1 0 | .8323398 .0315363 26.39 0.000 .7705299 .8941497
1 1 | .8018074 .0372661 21.52 0.000 .7287672 .8748476
--------------------------------------------------------------------------------------
Here is the average marginal effect, margins, dydx(conservative) at(compete=(0 1)) vsquish
Average marginal effects Number of obs = 446
Model VCE : Robust
Expression : Pr(vote), predict()
dy/dx w.r.t. : 1.conservative
1._at : compete = 0
2._at : compete = 1
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.conserva~e |
_at |
1 | .0854218 .0516731 1.65 0.098 -.0158556 .1866993
2 | -.0377562 .050136 -0.75 0.451 -.136021 .0605085
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
As you can see, the difference found in the second average marginal effect, -0.377562, is statistically insignificant. In this case, should I abandon my hypothesis that conservative party members are less likely to vote for yay in a competitive district? I am confused about the difference between significance in predictive margins (first margin table) and insignificance in average marginal effect (second margin table).
It would be appreciated if I can answer some comments on my analysis.
Thank you
I am doing my research in political science. I included binary*binary interaction term in my model, and I ran margin and average margin.
First, here is my estimation result including interaction terms. I did probit model.
Probit regression Number of obs = 446
Wald chi2(15) = 146.64
Prob > chi2 = 0.0000
Log pseudolikelihood = -118.81356 Pseudo R2 = 0.4567
(Std. Err. adjusted for 179 clusters in name)
--------------------------------------------------------------------------------------
| Robust
vote | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
1.compete | .6167187 .3708698 1.66 0.096 -.1101727 1.34361
1.conservative | .7567618 .5191474 1.46 0.145 -.2607484 1.774272
|
conservative#compete |
1 1 | -.8386206 .483335 -1.74 0.083 -1.78594 .1086986
|
1.unsafe | -.6638056 .3788255 -1.75 0.080 -1.40629 .0786787
|
conservative#unsafe |
1 1 | -.2375732 .5869731 -0.40 0.686 -1.388019 .9128729
|
ido | .2424258 .0802953 3.02 0.003 .0850499 .3998016
seniority | -.0638672 .1477812 -0.43 0.666 -.3535131 .2257787
leggender | -.3944897 .7005009 -0.56 0.573 -1.767446 .9784669
age | .3408219 .1482007 2.30 0.021 .0503539 .6312899
edu | -.1078646 .1406759 -0.77 0.443 -.3835842 .1678551
securitylaw | .3757814 .2143941 1.75 0.080 -.0444233 .7959861
northaid | .9259885 .2543168 3.64 0.000 .4275368 1.42444
diplosecu | .3236994 .1933323 1.67 0.094 -.055225 .7026237
initialvote | -1.602286 .2539444 -6.31 0.000 -2.100008 -1.104564
addedtroops | -1.237338 .2566488 -4.82 0.000 -1.740361 -.734316
_cons | -3.624946 1.054334 -3.44 0.001 -5.691402 -1.558489
--------------------------------------------------------------------------------------
Dependent variable is vote (nay: 0, yay:1)
Conservative (non-conservative party member:0, conservative party member:1)
compete (non-competitive district:0, competitive district:1)
My hypothesis is that conservative party members are less likely vote for yay in a competitive district.
Here is the result of margin command, margin conservative#compete
Predictive margins Number of obs = 446
Model VCE : Robust
Expression : Pr(vote), predict()
--------------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
conservative#compete |
0 0 | .746918 .0430746 17.34 0.000 .6624933 .8313426
0 1 | .8395636 .0271827 30.89 0.000 .7862865 .8928407
1 0 | .8323398 .0315363 26.39 0.000 .7705299 .8941497
1 1 | .8018074 .0372661 21.52 0.000 .7287672 .8748476
--------------------------------------------------------------------------------------
Here is the average marginal effect, margins, dydx(conservative) at(compete=(0 1)) vsquish
Average marginal effects Number of obs = 446
Model VCE : Robust
Expression : Pr(vote), predict()
dy/dx w.r.t. : 1.conservative
1._at : compete = 0
2._at : compete = 1
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.conserva~e |
_at |
1 | .0854218 .0516731 1.65 0.098 -.0158556 .1866993
2 | -.0377562 .050136 -0.75 0.451 -.136021 .0605085
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
As you can see, the difference found in the second average marginal effect, -0.377562, is statistically insignificant. In this case, should I abandon my hypothesis that conservative party members are less likely to vote for yay in a competitive district? I am confused about the difference between significance in predictive margins (first margin table) and insignificance in average marginal effect (second margin table).
It would be appreciated if I can answer some comments on my analysis.
Thank you
Comment