Dear STATA Professionals,
How are you today?
I want to do the panel data analysis by using SIPP (Survey of Income and Program Participation) data set from NBER.
The SIPP is a nationally representative survey which collects information from a large sample of households every four months (waves) over a
period of two to three years. For example, 1992 panel contains 9 waves of interviews and each wave has 4 consecutive monthly interviews, so it is person-month interviewing data.
However, not all individuals appear in the entire 9 waves. Calendar month of interview in each wave is different from rotation groups, but it is uniquely identified by 'reference month' variable. The reference month variable "refmth" has four values from 1 to 4 to distinguish number of interview month but not across waves.
Some researchers use sample from all reference months, while some researchers use sample from only 1st reference month or 4th reference month per wave due to recall problem.
For the panel regression in Stata, I have to declare panel ID and time variable like following;
xtset panelID timevariable
I have failed several times in declaring xtset with following error message; "repeated time values within panel".
Whenever I checked "isid panel ID time variable", it shows that they are not uniquely identified.
I found that I had not uniquely identify individuals in the household. According to the user's guide, we can identify individuals with using following four variables;
1.suid: Sample Unit Identification number assigning to the household and common to all individuals in that household. This identifier is constructed the same way on each wave
regardless of moves, to enable matching from wave to wave.
2. addid: The two-digit address ID code identifies each household associated with the same sample unit identification number. For example, the address ID code is 11
for all sample addresses that are the same as in Wave 1.
3. entry : Entry Address ID of the household that this person belonged to at the time this person first became part of the sample.
4. pnum: Person Number. The person ID is a five-digit number consisting of the two-digit entry address ID and a three-digit person number.
Person numbers 101, 102, etc., are assigned in Wave 1; 201, 202, etc., are assigned to persons added to the roster
in Wave 2, and so forth. Usually 101 is for household reference person and 102 for spouse to the reference person, and 103 for children.
With using above four variables, I have tried following methods to identify an individual, which I learned from this website, Stata Forum.
1. gen newvar=(suid*10000000) + (addid*100000) + ( entry*1000) + pnum, with expecting to see following results
10740691111101 in which 1074069 is suid, 11 is addid, 11 is entry, and 101 is pnum.
It didn't happen, however, because suid*10000000 didn't become 10740690000000 but become 10740689797120.
It was rounded at the end of digit. I tried to increase digits by using a command "format %25.0g", and also change data type by using "recast double", but still I could see the rounding up.
2. egen id=concat(suid addid entry pnum) , format(%25.0g)
Then, I could have a this combined number, for example, 10740691111101 as a string variable.
So, I tried to convert it into a numeric by using 'encode', but it didn't work with error message "too many variables".
So, I used a command 'destring', then it was converted into a numeric without rounding up and I applied "format %25.0g" to stretch out numbers.
Problem is some numbers are exactly same when it is string and is numeric, but many numbers are different in value in numeric from in string.
For example,
suid addid entry pnum id(string) id2(numeric)
1074969 11 11 101 10749691111101 10749691111101
1074969 11 11 102 10749691111102 10749691111102
1074969 11 11 103 10749691111103 10749691111102
In case of pnum 103, it is well combined as a string but after converting it into a numeric, it became a different number especially the last digit.
This things happen if suid>=90123026. First 36891 observations are o.k., but other observations out of 435757 have this problem, which is that only last digit is different.
1. How should I handle of rounding up problem at some digit of numbers in the first method above?
2. Why numbers are different from a string and a numeric in the second method above?
3. If I want to use all four reference months with as many as waves, how should I declare 'xtset' in using SIPP?
4. If I want to use only one reference month wish as many as waves, how should I declare 'xtset' in using SIPP?
I have an experience of using monthly data from IPUMS-CPS for panel regression. It is called 'mish', month in sample household level, which indicates the number of times (from 1 to 8) occupants of a housing unit have been interviewed for the CPS. I didn't have a problem of declaring 'xtset', so I want to shape similar panel structure by using SIPP.
Will you help me to identify a set of an unique individual and time variable in SIPP for panel regression?
I generate following sample from the data by using 'dataex'.
dataex suseqnum suid addid panel wave month year rot refmth entry pnum in 36800/435757
For example,
suid addid entry pnum id2(string) id(numeric) suseqnum panel wave month year rot refmth
934358343 31 11 103 "9343583433111103" 9343583433111102 16831 1992 5 2 1993 2 1
suseqnem: subsequent number or serial number
suid: sample unit identification number, household level
addid: the two-digit address ID code identifies each household
panel: in this case, it is called 1992 panel
wave: 1992 panel contains 9 waves
month: calendar month ranging 1-12
year: 1992 panel interviews same household over one or two years
rot: rotation group in which samples are grouped into 4 rotation groups having a different interview periods
refmth: reference month ranging 1-4. 1 means that a month before interview, for example
entry: entry address ID of household that this person belonged to at the time this person first became part of the sample.
pnum: person number. Detail is in the above.
input double suid byte(addid entry) int pnum str16 id2 double id int(suseqnum panel) byte(wave month) int year byte(rot refmth)
934358343 31 11 103 "9343583433111103" 9343583433111102 16831 1992 5 2 1993 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 16124 1992 7 10 1993 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 15517 1992 9 6 1994 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 17190 1992 4 10 1992 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 15517 1992 9 6 1994 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16831 1992 5 2 1993 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 15819 1992 8 2 1994 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16473 1992 6 6 1993 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 17190 1992 4 10 1992 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16124 1992 7 10 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 15517 1992 9 6 1994 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16124 1992 7 10 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16473 1992 6 6 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 15819 1992 8 2 1994 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16831 1992 5 2 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 17190 1992 4 10 1992 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16124 1992 7 10 1993 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16473 1992 6 6 1993 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 15517 1992 9 6 1994 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 15819 1992 8 2 1994 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 17190 1992 4 10 1992 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16831 1992 5 2 1993 2 1
934358746 11 11 401 "9343587461111401" 9343587461111400 16832 1992 5 2 1993 2 1
934358746 11 11 401 "9343587461111401" 9343587461111400 16474 1992 6 6 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16832 1992 5 2 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 15820 1992 8 2 1994 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16474 1992 6 6 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16125 1992 7 10 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 18103 1992 2 2 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 15518 1992 9 6 1994 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 17819 1992 3 6 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 17191 1992 4 10 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 18103 1992 1 10 1991 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 18103 1992 1 10 1991 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 17819 1992 3 6 1992 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 17191 1992 4 10 1992 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16474 1992 6 6 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16125 1992 7 10 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 15518 1992 9 6 1994 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 15820 1992 8 2 1994 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16832 1992 5 2 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 18103 1992 2 2 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16126 1992 7 10 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 18104 1992 1 10 1991 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 15821 1992 8 2 1994 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 15519 1992 9 6 1994 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 18104 1992 2 2 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16833 1992 5 2 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 17820 1992 3 6 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16475 1992 6 6 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 17192 1992 4 10 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 18104 1992 2 2 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16833 1992 5 2 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 17192 1992 4 10 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16126 1992 7 10 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 15821 1992 8 2 1994 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 18104 1992 1 10 1991 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 17820 1992 3 6 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16475 1992 6 6 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 15519 1992 9 6 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16126 1992 7 10 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 15519 1992 9 6 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16833 1992 5 2 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 17192 1992 4 10 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 17820 1992 3 6 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16475 1992 6 6 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 15821 1992 8 2 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 18104 1992 2 2 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 18104 1992 1 10 1991 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 18104 1992 2 2 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16475 1992 6 6 1993 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16833 1992 5 2 1993 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 17820 1992 3 6 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 17192 1992 4 10 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 15821 1992 8 2 1994 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 15519 1992 9 6 1994 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 18104 1992 1 10 1991 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16126 1992 7 10 1993 2 1
934651207 11 11 101 "9346512071111101" 9346512071111100 18105 1992 1 10 1991 2 1
934651207 11 11 101 "9346512071111101" 9346512071111100 18105 1992 2 2 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 17822 1992 3 6 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 18106 1992 2 2 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 18106 1992 1 10 1991 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 18106 1992 2 2 1992 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 18106 1992 1 10 1991 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 17822 1992 3 6 1992 2 1
934651259 31 11 101 "9346512593111101" 9346512593111100 17194 1992 4 10 1992 2 1
934651259 31 11 102 "9346512593111102" 9346512593111102 17194 1992 4 10 1992 2 1
934651259 41 11 101 "9346512594111101" 9346512594111100 16834 1992 5 2 1993 2 1
934651259 41 11 102 "9346512594111102" 9346512594111102 16834 1992 5 2 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 16476 1992 6 6 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 16127 1992 7 10 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 15520 1992 9 6 1994 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 15822 1992 8 2 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 15822 1992 8 2 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 15520 1992 9 6 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 16127 1992 7 10 1993 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 16476 1992 6 6 1993 2 1
934651831 11 11 101 "9346518311111101" 9346518311111100 15823 1992 8 2 1994 2 1
934651831 11 11 101 "9346518311111101" 9346518311111100 18107 1992 2 2 1992 2 1
I am sorry it doesn't look beautiful. It's my first time using 'dataex'. Columns are not well organized.
In the above, some values are same in the string and the numeric but many are different.
The combined value that I want to have is the number expressed as a string, but converted numeric values are wrong.
I don't know why.
Thank you so much sharing of your knowledge and time, in advance.
Have a good day.
David.
How are you today?
I want to do the panel data analysis by using SIPP (Survey of Income and Program Participation) data set from NBER.
The SIPP is a nationally representative survey which collects information from a large sample of households every four months (waves) over a
period of two to three years. For example, 1992 panel contains 9 waves of interviews and each wave has 4 consecutive monthly interviews, so it is person-month interviewing data.
However, not all individuals appear in the entire 9 waves. Calendar month of interview in each wave is different from rotation groups, but it is uniquely identified by 'reference month' variable. The reference month variable "refmth" has four values from 1 to 4 to distinguish number of interview month but not across waves.
Some researchers use sample from all reference months, while some researchers use sample from only 1st reference month or 4th reference month per wave due to recall problem.
For the panel regression in Stata, I have to declare panel ID and time variable like following;
xtset panelID timevariable
I have failed several times in declaring xtset with following error message; "repeated time values within panel".
Whenever I checked "isid panel ID time variable", it shows that they are not uniquely identified.
I found that I had not uniquely identify individuals in the household. According to the user's guide, we can identify individuals with using following four variables;
1.suid: Sample Unit Identification number assigning to the household and common to all individuals in that household. This identifier is constructed the same way on each wave
regardless of moves, to enable matching from wave to wave.
2. addid: The two-digit address ID code identifies each household associated with the same sample unit identification number. For example, the address ID code is 11
for all sample addresses that are the same as in Wave 1.
3. entry : Entry Address ID of the household that this person belonged to at the time this person first became part of the sample.
4. pnum: Person Number. The person ID is a five-digit number consisting of the two-digit entry address ID and a three-digit person number.
Person numbers 101, 102, etc., are assigned in Wave 1; 201, 202, etc., are assigned to persons added to the roster
in Wave 2, and so forth. Usually 101 is for household reference person and 102 for spouse to the reference person, and 103 for children.
With using above four variables, I have tried following methods to identify an individual, which I learned from this website, Stata Forum.
1. gen newvar=(suid*10000000) + (addid*100000) + ( entry*1000) + pnum, with expecting to see following results
10740691111101 in which 1074069 is suid, 11 is addid, 11 is entry, and 101 is pnum.
It didn't happen, however, because suid*10000000 didn't become 10740690000000 but become 10740689797120.
It was rounded at the end of digit. I tried to increase digits by using a command "format %25.0g", and also change data type by using "recast double", but still I could see the rounding up.
2. egen id=concat(suid addid entry pnum) , format(%25.0g)
Then, I could have a this combined number, for example, 10740691111101 as a string variable.
So, I tried to convert it into a numeric by using 'encode', but it didn't work with error message "too many variables".
So, I used a command 'destring', then it was converted into a numeric without rounding up and I applied "format %25.0g" to stretch out numbers.
Problem is some numbers are exactly same when it is string and is numeric, but many numbers are different in value in numeric from in string.
For example,
suid addid entry pnum id(string) id2(numeric)
1074969 11 11 101 10749691111101 10749691111101
1074969 11 11 102 10749691111102 10749691111102
1074969 11 11 103 10749691111103 10749691111102
In case of pnum 103, it is well combined as a string but after converting it into a numeric, it became a different number especially the last digit.
This things happen if suid>=90123026. First 36891 observations are o.k., but other observations out of 435757 have this problem, which is that only last digit is different.
1. How should I handle of rounding up problem at some digit of numbers in the first method above?
2. Why numbers are different from a string and a numeric in the second method above?
3. If I want to use all four reference months with as many as waves, how should I declare 'xtset' in using SIPP?
4. If I want to use only one reference month wish as many as waves, how should I declare 'xtset' in using SIPP?
I have an experience of using monthly data from IPUMS-CPS for panel regression. It is called 'mish', month in sample household level, which indicates the number of times (from 1 to 8) occupants of a housing unit have been interviewed for the CPS. I didn't have a problem of declaring 'xtset', so I want to shape similar panel structure by using SIPP.
Will you help me to identify a set of an unique individual and time variable in SIPP for panel regression?
I generate following sample from the data by using 'dataex'.
dataex suseqnum suid addid panel wave month year rot refmth entry pnum in 36800/435757
For example,
suid addid entry pnum id2(string) id(numeric) suseqnum panel wave month year rot refmth
934358343 31 11 103 "9343583433111103" 9343583433111102 16831 1992 5 2 1993 2 1
suseqnem: subsequent number or serial number
suid: sample unit identification number, household level
addid: the two-digit address ID code identifies each household
panel: in this case, it is called 1992 panel
wave: 1992 panel contains 9 waves
month: calendar month ranging 1-12
year: 1992 panel interviews same household over one or two years
rot: rotation group in which samples are grouped into 4 rotation groups having a different interview periods
refmth: reference month ranging 1-4. 1 means that a month before interview, for example
entry: entry address ID of household that this person belonged to at the time this person first became part of the sample.
pnum: person number. Detail is in the above.
input double suid byte(addid entry) int pnum str16 id2 double id int(suseqnum panel) byte(wave month) int year byte(rot refmth)
934358343 31 11 103 "9343583433111103" 9343583433111102 16831 1992 5 2 1993 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 16124 1992 7 10 1993 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 15517 1992 9 6 1994 2 1
934358343 31 11 103 "9343583433111103" 9343583433111102 17190 1992 4 10 1992 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 15517 1992 9 6 1994 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16831 1992 5 2 1993 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 15819 1992 8 2 1994 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16473 1992 6 6 1993 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 17190 1992 4 10 1992 2 1
934358343 31 11 104 "9343583433111104" 9343583433111104 16124 1992 7 10 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 15517 1992 9 6 1994 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16124 1992 7 10 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16473 1992 6 6 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 15819 1992 8 2 1994 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 16831 1992 5 2 1993 2 1
934358343 31 11 102 "9343583433111102" 9343583433111102 17190 1992 4 10 1992 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16124 1992 7 10 1993 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16473 1992 6 6 1993 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 15517 1992 9 6 1994 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 15819 1992 8 2 1994 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 17190 1992 4 10 1992 2 1
934358343 31 31 301 "9343583433131301" 9343583433131300 16831 1992 5 2 1993 2 1
934358746 11 11 401 "9343587461111401" 9343587461111400 16832 1992 5 2 1993 2 1
934358746 11 11 401 "9343587461111401" 9343587461111400 16474 1992 6 6 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16832 1992 5 2 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 15820 1992 8 2 1994 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16474 1992 6 6 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 16125 1992 7 10 1993 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 18103 1992 2 2 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 15518 1992 9 6 1994 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 17819 1992 3 6 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 17191 1992 4 10 1992 2 1
934358746 11 11 101 "9343587461111101" 9343587461111100 18103 1992 1 10 1991 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 18103 1992 1 10 1991 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 17819 1992 3 6 1992 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 17191 1992 4 10 1992 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16474 1992 6 6 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16125 1992 7 10 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 15518 1992 9 6 1994 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 15820 1992 8 2 1994 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 16832 1992 5 2 1993 2 1
934358746 11 11 102 "9343587461111102" 9343587461111102 18103 1992 2 2 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16126 1992 7 10 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 18104 1992 1 10 1991 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 15821 1992 8 2 1994 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 15519 1992 9 6 1994 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 18104 1992 2 2 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16833 1992 5 2 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 17820 1992 3 6 1992 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 16475 1992 6 6 1993 2 1
934358765 11 11 101 "9343587651111101" 9343587651111100 17192 1992 4 10 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 18104 1992 2 2 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16833 1992 5 2 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 17192 1992 4 10 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16126 1992 7 10 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 15821 1992 8 2 1994 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 18104 1992 1 10 1991 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 17820 1992 3 6 1992 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 16475 1992 6 6 1993 2 1
934358765 11 11 103 "9343587651111103" 9343587651111102 15519 1992 9 6 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16126 1992 7 10 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 15519 1992 9 6 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16833 1992 5 2 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 17192 1992 4 10 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 17820 1992 3 6 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 16475 1992 6 6 1993 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 15821 1992 8 2 1994 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 18104 1992 2 2 1992 2 1
934358765 11 11 102 "9343587651111102" 9343587651111102 18104 1992 1 10 1991 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 18104 1992 2 2 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16475 1992 6 6 1993 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16833 1992 5 2 1993 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 17820 1992 3 6 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 17192 1992 4 10 1992 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 15821 1992 8 2 1994 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 15519 1992 9 6 1994 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 18104 1992 1 10 1991 2 1
934358765 11 11 104 "9343587651111104" 9343587651111104 16126 1992 7 10 1993 2 1
934651207 11 11 101 "9346512071111101" 9346512071111100 18105 1992 1 10 1991 2 1
934651207 11 11 101 "9346512071111101" 9346512071111100 18105 1992 2 2 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 17822 1992 3 6 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 18106 1992 2 2 1992 2 1
934651259 11 11 101 "9346512591111101" 9346512591111100 18106 1992 1 10 1991 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 18106 1992 2 2 1992 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 18106 1992 1 10 1991 2 1
934651259 11 11 102 "9346512591111102" 9346512591111102 17822 1992 3 6 1992 2 1
934651259 31 11 101 "9346512593111101" 9346512593111100 17194 1992 4 10 1992 2 1
934651259 31 11 102 "9346512593111102" 9346512593111102 17194 1992 4 10 1992 2 1
934651259 41 11 101 "9346512594111101" 9346512594111100 16834 1992 5 2 1993 2 1
934651259 41 11 102 "9346512594111102" 9346512594111102 16834 1992 5 2 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 16476 1992 6 6 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 16127 1992 7 10 1993 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 15520 1992 9 6 1994 2 1
934651259 51 11 101 "9346512595111101" 9346512595111100 15822 1992 8 2 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 15822 1992 8 2 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 15520 1992 9 6 1994 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 16127 1992 7 10 1993 2 1
934651259 51 11 102 "9346512595111102" 9346512595111102 16476 1992 6 6 1993 2 1
934651831 11 11 101 "9346518311111101" 9346518311111100 15823 1992 8 2 1994 2 1
934651831 11 11 101 "9346518311111101" 9346518311111100 18107 1992 2 2 1992 2 1
I am sorry it doesn't look beautiful. It's my first time using 'dataex'. Columns are not well organized.
In the above, some values are same in the string and the numeric but many are different.
The combined value that I want to have is the number expressed as a string, but converted numeric values are wrong.
I don't know why.
Thank you so much sharing of your knowledge and time, in advance.
Have a good day.
David.
Comment