Hello,
I am trying to apply inequality decomposition techniques to the US Survey of Consumer Finances. I am using packages ineqfac (following Shorrocks 1982) and ineqrbd (following Fields 2003).
I have four questions:
1) What is the correct interpretation of binary variables in decomposition analysis? E.g.
ineqrbd logY age educ Dhhsex blackhisp Dmarried kids Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant noregr i2
Regression-based decomposition of inequality in logY
---------------------------------------------------------------------------
Decomp. | 100*s_f S_f 100*m_f/m I2_f I2_f/I2(total)
---------+-----------------------------------------------------------------
residual | 10.1209 0.0004 1.9958 25.6742 5826.4009
age | -11.4448 -0.0005 38.1775 0.0659 14.9631
educ | 66.9315 0.0029 53.6437 0.0348 7.9077
Dhhsex | 14.6494 0.0006 -2.0987 1.2746 289.2482
blackhisp| -8.9524 -0.0004 1.3629 1.9308 438.1765
Dmarried | -11.6565 -0.0005 1.9960 0.6976 158.3160
kids | 9.1816 0.0004 4.3095 0.8291 188.1444
Dse | 0.3671 0.0000 0.0635 4.0128 910.6409
Dunemp | 8.3495 0.0004 -1.3938 1.2579 285.4603
wageinc | 21.5828 0.0010 2.1922 1.2276 278.5796
bussefarminc| -0.0430 -0.0000 -0.0022 563.7818 1.28e+05
intdivinc| -1.2066 -0.0001 -0.0659 72.3670 1.64e+04
kginc | 0.5308 0.0000 0.0133 582.2035 1.32e+05
ssretinc | -0.6790 -0.0000 -0.4728 3.6536 829.1441
transfothinc| 0.0037 0.0000 0.0025 132.0923 3.00e+04
debtpay | 2.2650 0.0001 0.2764 3.8934 883.5458
---------+-----------------------------------------------------------------
Total | 100.0000 0.0044 100.0000 0.0044 1.0000
---------------------------------------------------------------------------
What would be the correct interpretation of contribution of a binary variable such as household sex (Dhhsex)?
2) Why are the results volatile to logging the dependent var? Is it preferred to use log transformation?
ineqrbd income age educ Dhhsex blackhisp Dmarried kids Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant noregr
Regression-based decomposition of inequality in income
Decomp. 100*s_f S_f 100*m_f/m CV_f CV_f/CV(total)
residual 30.8970 1.2925 -0.8500 -273.3506 -65.3455
age 0.0014 0.0001 2.0031 0.3629 0.0867
educ -0.3620 -0.0151 -50.5724 -0.2640 -0.0631
Dhhsex -0.0192 -0.0008 0.5979 1.5984 0.3821
blackhisp 0.0140 0.0006 -0.4948 -1.9605 -0.4687
Dmarried -0.2489 -0.0104 9.9806 1.1798 0.2820
kids -0.0453 -0.0019 -8.4874 -1.2887 -0.3081
Dse 0.2869 0.0120 3.8114 2.8257 0.6755
Dunemp -0.0973 -0.0041 3.8557 1.5863 0.3792
wageinc 5.8093 0.2430 45.6681 1.5716 0.3757
bussefarminc 0.2985 0.0125 0.4484 33.6926 8.0543
intdivinc 7.6039 0.3181 7.9572 12.0565 2.8821
kginc 30.1608 1.2617 6.2378 34.1966 8.1748
ssretinc 0.2871 0.0120 9.5187 2.7098 0.6478
transfothinc 0.2246 0.0094 1.1503 16.2856 3.8931
debtpay 25.1892 1.0537 69.1754 2.7936 0.6678
Total 100.0000 4.1832 100.0000 4.1832 1.0000
3) If square terms are included, what would be their interpretation?
. ineqrbd logY age age2 educ Dhhsex blackhisp Dmarried kids kids2 Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant
> noregr i2
Regression-based decomposition of inequality in logY
---------------------------------------------------------------------------
Decomp. | 100*s_f S_f 100*m_f/m I2_f I2_f/I2(total)
---------+-----------------------------------------------------------------
residual | 21.6590 0.0010 0.8227 74.3799 1.69e+04
age | -41.5669 -0.0018 138.6583 0.0659 14.9631
age2 | 62.9746 0.0028 -67.4030 0.2414 54.7799
educ | 31.1174 0.0014 24.9398 0.0348 7.9077
Dhhsex | 6.9642 0.0003 -0.9977 1.2746 289.2482
blackhisp| 0.6091 0.0000 -0.0927 1.9308 438.1765
Dmarried | -1.2042 -0.0001 0.2062 0.6976 158.3160
kids | 5.6279 0.0002 2.6416 0.8291 188.1444
kids2 | -2.3810 -0.0001 -1.1313 1.9253 436.9110
Dse | 0.5107 0.0000 0.0883 4.0128 910.6409
Dunemp | -1.8055 -0.0001 0.3014 1.2579 285.4603
wageinc | 14.8888 0.0007 1.5123 1.2276 278.5796
bussefarminc| 0.1004 0.0000 0.0050 563.7818 1.28e+05
intdivinc| 0.1786 0.0000 0.0098 72.3670 1.64e+04
kginc | 0.6638 0.0000 0.0167 582.2035 1.32e+05
ssretinc | 0.3625 0.0000 0.2524 3.6536 829.1441
transfothinc| 0.0202 0.0000 0.0140 132.0923 3.00e+04
debtpay | 1.2804 0.0001 0.1562 3.8934 883.5458
---------+-----------------------------------------------------------------
Total | 100.0000 0.0044 100.0000 0.0044 1.0000
---------------------------------------------------------------------------
Since the results change quite a bit, does it make sense to include square terms for decomposition?
And finally:
4) I have obtained drastically different results for factor decomposition using ineqrbd and ineqfac. As can be seen above, ineqrbd returns larger contrubution of wageinc (wage income) over e.g. business income (bussefarmic). But this result is reversed with ineqfac:
ineqfac wageinc bussefarminc intdivinc kginc ssretinc transfothinc [fw=fwt] if year==1989, i2
Inequality decomposition by factor components
Factor 100*s_f S_f 100*m_f/m I2_f I2_f/I2(Total)
wageinc 6.8806 0.7312 65.3736 1.2350 0.1162
bussefarminc 67.5214 7.1760 11.0296 567.5948 53.4071
intdivinc 5.0297 0.5345 6.4171 72.6795 6.8387
kginc 18.8564 2.0040 5.4555 584.7025 55.0169
ssretinc 0.1547 0.0164 8.1420 3.6715 0.3455
transfothinc 1.5572 0.1655 3.5822 132.6103 12.4778
Total 100.0000 10.6277 100.0000 10.6277 1.0000
I tried to read up on that but it is still not clear to me why the results are so different. I noted that when using income instead of log of income in ineqrbd (see point 2) the results of ineqrbd and ineqfac are more consistent.
Thank you for your help!
I am trying to apply inequality decomposition techniques to the US Survey of Consumer Finances. I am using packages ineqfac (following Shorrocks 1982) and ineqrbd (following Fields 2003).
I have four questions:
1) What is the correct interpretation of binary variables in decomposition analysis? E.g.
ineqrbd logY age educ Dhhsex blackhisp Dmarried kids Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant noregr i2
Regression-based decomposition of inequality in logY
---------------------------------------------------------------------------
Decomp. | 100*s_f S_f 100*m_f/m I2_f I2_f/I2(total)
---------+-----------------------------------------------------------------
residual | 10.1209 0.0004 1.9958 25.6742 5826.4009
age | -11.4448 -0.0005 38.1775 0.0659 14.9631
educ | 66.9315 0.0029 53.6437 0.0348 7.9077
Dhhsex | 14.6494 0.0006 -2.0987 1.2746 289.2482
blackhisp| -8.9524 -0.0004 1.3629 1.9308 438.1765
Dmarried | -11.6565 -0.0005 1.9960 0.6976 158.3160
kids | 9.1816 0.0004 4.3095 0.8291 188.1444
Dse | 0.3671 0.0000 0.0635 4.0128 910.6409
Dunemp | 8.3495 0.0004 -1.3938 1.2579 285.4603
wageinc | 21.5828 0.0010 2.1922 1.2276 278.5796
bussefarminc| -0.0430 -0.0000 -0.0022 563.7818 1.28e+05
intdivinc| -1.2066 -0.0001 -0.0659 72.3670 1.64e+04
kginc | 0.5308 0.0000 0.0133 582.2035 1.32e+05
ssretinc | -0.6790 -0.0000 -0.4728 3.6536 829.1441
transfothinc| 0.0037 0.0000 0.0025 132.0923 3.00e+04
debtpay | 2.2650 0.0001 0.2764 3.8934 883.5458
---------+-----------------------------------------------------------------
Total | 100.0000 0.0044 100.0000 0.0044 1.0000
---------------------------------------------------------------------------
What would be the correct interpretation of contribution of a binary variable such as household sex (Dhhsex)?
2) Why are the results volatile to logging the dependent var? Is it preferred to use log transformation?
ineqrbd income age educ Dhhsex blackhisp Dmarried kids Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant noregr
Regression-based decomposition of inequality in income
Decomp. 100*s_f S_f 100*m_f/m CV_f CV_f/CV(total)
residual 30.8970 1.2925 -0.8500 -273.3506 -65.3455
age 0.0014 0.0001 2.0031 0.3629 0.0867
educ -0.3620 -0.0151 -50.5724 -0.2640 -0.0631
Dhhsex -0.0192 -0.0008 0.5979 1.5984 0.3821
blackhisp 0.0140 0.0006 -0.4948 -1.9605 -0.4687
Dmarried -0.2489 -0.0104 9.9806 1.1798 0.2820
kids -0.0453 -0.0019 -8.4874 -1.2887 -0.3081
Dse 0.2869 0.0120 3.8114 2.8257 0.6755
Dunemp -0.0973 -0.0041 3.8557 1.5863 0.3792
wageinc 5.8093 0.2430 45.6681 1.5716 0.3757
bussefarminc 0.2985 0.0125 0.4484 33.6926 8.0543
intdivinc 7.6039 0.3181 7.9572 12.0565 2.8821
kginc 30.1608 1.2617 6.2378 34.1966 8.1748
ssretinc 0.2871 0.0120 9.5187 2.7098 0.6478
transfothinc 0.2246 0.0094 1.1503 16.2856 3.8931
debtpay 25.1892 1.0537 69.1754 2.7936 0.6678
Total 100.0000 4.1832 100.0000 4.1832 1.0000
3) If square terms are included, what would be their interpretation?
. ineqrbd logY age age2 educ Dhhsex blackhisp Dmarried kids kids2 Dse Dunemp wageinc bussefarminc intdivinc kginc ssretinc transfothinc debtpay [fw=fwt] if year==1989, noconstant
> noregr i2
Regression-based decomposition of inequality in logY
---------------------------------------------------------------------------
Decomp. | 100*s_f S_f 100*m_f/m I2_f I2_f/I2(total)
---------+-----------------------------------------------------------------
residual | 21.6590 0.0010 0.8227 74.3799 1.69e+04
age | -41.5669 -0.0018 138.6583 0.0659 14.9631
age2 | 62.9746 0.0028 -67.4030 0.2414 54.7799
educ | 31.1174 0.0014 24.9398 0.0348 7.9077
Dhhsex | 6.9642 0.0003 -0.9977 1.2746 289.2482
blackhisp| 0.6091 0.0000 -0.0927 1.9308 438.1765
Dmarried | -1.2042 -0.0001 0.2062 0.6976 158.3160
kids | 5.6279 0.0002 2.6416 0.8291 188.1444
kids2 | -2.3810 -0.0001 -1.1313 1.9253 436.9110
Dse | 0.5107 0.0000 0.0883 4.0128 910.6409
Dunemp | -1.8055 -0.0001 0.3014 1.2579 285.4603
wageinc | 14.8888 0.0007 1.5123 1.2276 278.5796
bussefarminc| 0.1004 0.0000 0.0050 563.7818 1.28e+05
intdivinc| 0.1786 0.0000 0.0098 72.3670 1.64e+04
kginc | 0.6638 0.0000 0.0167 582.2035 1.32e+05
ssretinc | 0.3625 0.0000 0.2524 3.6536 829.1441
transfothinc| 0.0202 0.0000 0.0140 132.0923 3.00e+04
debtpay | 1.2804 0.0001 0.1562 3.8934 883.5458
---------+-----------------------------------------------------------------
Total | 100.0000 0.0044 100.0000 0.0044 1.0000
---------------------------------------------------------------------------
Since the results change quite a bit, does it make sense to include square terms for decomposition?
And finally:
4) I have obtained drastically different results for factor decomposition using ineqrbd and ineqfac. As can be seen above, ineqrbd returns larger contrubution of wageinc (wage income) over e.g. business income (bussefarmic). But this result is reversed with ineqfac:
ineqfac wageinc bussefarminc intdivinc kginc ssretinc transfothinc [fw=fwt] if year==1989, i2
Inequality decomposition by factor components
Factor 100*s_f S_f 100*m_f/m I2_f I2_f/I2(Total)
wageinc 6.8806 0.7312 65.3736 1.2350 0.1162
bussefarminc 67.5214 7.1760 11.0296 567.5948 53.4071
intdivinc 5.0297 0.5345 6.4171 72.6795 6.8387
kginc 18.8564 2.0040 5.4555 584.7025 55.0169
ssretinc 0.1547 0.0164 8.1420 3.6715 0.3455
transfothinc 1.5572 0.1655 3.5822 132.6103 12.4778
Total 100.0000 10.6277 100.0000 10.6277 1.0000
I tried to read up on that but it is still not clear to me why the results are so different. I noted that when using income instead of log of income in ineqrbd (see point 2) the results of ineqrbd and ineqfac are more consistent.
Thank you for your help!
Comment