Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • ordered probit in panel data

    Hello
    I am working on Stat 13.My dependent variable is a qualitative variable with values ranging from0-6. I plan to use ordered probit. I am not clear on the meaning of offset variable and how is should run this command?I ama novice in this area
    thanks in anticipation

  • #2
    Pritika:
    welcome to the list.
    I would start off with reading -probit- and -oprobit- entries in Stata .pdf manual.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Thank you sir for your prompt reply.
      I am completely new to econometrics and am facing problem comprehending many terms.
      I have gone through the section on panel data but under offset it is asking to mention varname.
      I am not clear with this.

      Comment


      • #4
        Pritika:
        the following Stata thread can be useful : https://www.stata.com/statalist/arch.../msg00082.html.
        I would also advice you to familiarize yourself with -probit- and -oprobit- before moving to panel data analysis.
        As an aside, please call me Carlo, as many on (and many more off) the list do.
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment


        • #5
          Hello
          I have tried marginal effects post xtoprobit using the mfx command in Stata13. I am getting the same coefficients as the original regression.Is something wong???Kindly guide

          Comment


          • #6
            Pritika:
            why using the old-fashioned -mfx- when -margins- has widely superseded it?
            Why not posting what you have typed and what Stata gave you back (as per FAQ) so that the interested listers can see what's going on with your analysis?
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment


            • #7
              xtoprobit sum Notice CPCB MNC Union INNOVATIONAWARD PATENTFILED, offset(sum)

              Fitting comparison model:

              Iteration 0: log likelihood = -1723.0999
              Iteration 1: log likelihood = -600.01555
              Iteration 2: log likelihood = -535.4172
              Iteration 3: log likelihood = -534.80069
              Iteration 4: log likelihood = -534.79956
              Iteration 5: log likelihood = -534.79956

              Refining starting values:

              Grid node 0: log likelihood = -529.66243

              Fitting full model:

              Iteration 0: log likelihood = -529.66243 (not concave)
              Iteration 1: log likelihood = -519.59283
              Iteration 2: log likelihood = -446.70456
              Iteration 3: log likelihood = -441.5485
              Iteration 4: log likelihood = -441.05758
              Iteration 5: log likelihood = -441.05325
              Iteration 6: log likelihood = -441.05332
              Iteration 7: log likelihood = -441.05332

              Random-effects ordered probit regression Number of obs = 897
              Group variable: companynum Number of groups = 152

              Random effects u_i ~ Gaussian Obs per group: min = 1
              avg = 5.9
              max = 6

              Integration method: mvaghermite Integration points = 12

              Wald chi2(6) = 73.20
              Log likelihood = -441.05332 Prob > chi2 = 0.0000

              ( 1) [sum]_cons = 0
              -----------------------------------------------------------------------------------
              sum | Coef. Std. Err. z P>|z| [95% Conf. Interval]
              ------------------+----------------------------------------------------------------
              Notice | .3042002 .1352312 2.25 0.024 .0391519 .5692486
              CPCB | 1.175251 .2337227 5.03 0.000 .7171628 1.633339
              MNC | 1.52322 .4189081 3.64 0.000 .7021752 2.344265
              Union | .8157972 .2416081 3.38 0.001 .3422541 1.28934
              INN | .1825001 .0833534 2.19 0.029 .0191303 .3458699
              PAT | .0003482 .0010565 0.33 0.742 -.0017225 .0024189
              _cons | 0 (omitted)
              sum | 1 (offset)
              ------------------+----------------------------------------------------------------
              /cut1 | .7191373 .2671277 2.69 0.007 .1955766 1.242698
              /cut2 | 4.029229 .3247377 12.41 0.000 3.392755 4.665703
              /cut3 | 6.549557 .3832683 17.09 0.000 5.798365 7.300749
              /cut4 | 8.170945 .4410812 18.52 0.000 7.306442 9.035449
              /cut5 | 9.953867 .5117506 19.45 0.000 8.950855 10.95688
              /cut6 | 12.36265 .62221 19.87 0.000 11.14314 13.58216
              ------------------+----------------------------------------------------------------
              /sigma2_u | 4.606139 1.01237 2.994015 7.08631
              -----------------------------------------------------------------------------------
              LR test vs. oprobit regression: chibar2(01) = 187.49 Prob>=chibar2 = 0.0000

              . mfx

              Marginal effects after meglm
              y = Linear prediction (predict)
              = 2.3933419
              ------------------------------------------------------------------------------
              variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
              ---------+--------------------------------------------------------------------
              Notice | .3042002 .13523 2.25 0.024 .039152 .569249 .050167
              CPCB*| 1.175251 .23372 5.03 0.000 .717163 1.63334 .283166
              MNC*| 1.52322 .41891 3.64 0.000 .702175 2.34426 .38796
              Union*| .8157972 .24161 3.38 0.001 .342254 1.28934 .146042
              INN | .1825001 .08335 2.19 0.029 .01913 .34587 .311037
              PAT | .0003482 .00106 0.33 0.742 -.001723 .002419 12.0312
              sum | (offset) 1.27425
              sum | (offset1) 1.27425
              ------------------------------------------------------------------------------
              (*) dy/dx is for discrete change of dummy variable from 0 to 1

              Comment


              • #8
                Kindly guide

                Comment


                • #9
                  which margin command has to be used???

                  Comment


                  • #10
                    Pritika:
                    you obtained exactly what you asked Stata for, as you can see from the following toy-example:
                    Code:
                    use http://www.stata-press.com/data/r14/margex
                    . regress y i.sex i.group age
                    
                          Source |       SS           df       MS      Number of obs   =     3,000
                    -------------+----------------------------------   F(4, 2995)      =    136.51
                           Model |  214569.509         4  53642.3772   Prob > F        =    0.0000
                        Residual |   1176863.5     2,995  392.942737   R-squared       =    0.1542
                    -------------+----------------------------------   Adj R-squared   =    0.1531
                           Total |  1391433.01     2,999  463.965657   Root MSE        =    19.823
                    
                    ------------------------------------------------------------------------------
                               y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                             sex |
                         female  |   18.44069   .8819175    20.91   0.000     16.71146    20.16991
                                 |
                           group |
                              2  |   5.178636   .9584485     5.40   0.000     3.299352    7.057919
                              3  |   13.45907   1.286127    10.46   0.000     10.93729    15.98085
                                 |
                             age |  -.3298831   .0373191    -8.84   0.000    -.4030567   -.2567094
                           _cons |   68.63586   1.962901    34.97   0.000     64.78709    72.48463
                    ------------------------------------------------------------------------------
                    
                    . margins, dydx(*)
                    
                    Average marginal effects                        Number of obs     =      3,000
                    Model VCE    : OLS
                    
                    Expression   : Linear prediction, predict()
                    dy/dx w.r.t. : 1.sex 2.group 3.group age
                    
                    ------------------------------------------------------------------------------
                                 |            Delta-method
                                 |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                             sex |
                         female  |   18.44069   .8819175    20.91   0.000     16.71146    20.16991
                                 |
                           group |
                              2  |   5.178636   .9584485     5.40   0.000     3.299352    7.057919
                              3  |   13.45907   1.286127    10.46   0.000     10.93729    15.98085
                                 |
                             age |  -.3298831   .0373191    -8.84   0.000    -.4030567   -.2567094
                    ------------------------------------------------------------------------------
                    Note: dy/dx for factor levels is the discrete change from the base level.
                    Then the main question is: what do you want to get from -margins-?
                    Kind regards,
                    Carlo
                    (Stata 19.0)

                    Comment


                    • #11
                      How to measure magnitude of estimated parameters?

                      Comment


                      • #12
                        I want to measure marginal effects at the average number of practices(sum) adopted and for one standard deviation change in continuous variable and a change from 0 to 1 for dummy variables

                        Comment


                        • #13
                          Pritika:
                          see -help estat esize-.(for linear models only, though).
                          Otherwise, please provide more details about your query. Thanks.
                          Kind regards,
                          Carlo
                          (Stata 19.0)

                          Comment


                          • #14
                            Carlo I am measuring the impact of a number of organisational variable on the environmental management system(sum).EMS is a latent variable which represents the environmental management quality.After running the xtoprobit on my panel data I now want to measure the magnitude of impact of my Independent variables(both continous and dummy) on my latent dependent variable.

                            Comment


                            • #15
                              Pritika:
                              for parameters interpretation, see -oprobit- entry in Stata .pdf manual.
                              If you want to calculate predicted probability of the dependent variable, see -help xtoprobit postestimation-, and related entry in Stata .pdf manual, Example 1.
                              Kind regards,
                              Carlo
                              (Stata 19.0)

                              Comment

                              Working...
                              X