-
Login or Register
- Log in with
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm( inflation gfcfgrow hfcegrow lrgd > popc , lag(2 3) collapse model(diff)) gmm( inflation gfcfgrow hfcegrow lrgdpopc, lag(1 2) diff collapse mode > l(level)) iv(sme,model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 4.7191492 Fitting reduced model 1: Step 1 f(b) = .3986962 Fitting reduced model 2: Step 1 f(b) = .93970412 Fitting reduced model 3: Step 1 f(b) = 4.5853153 Fitting no-level model: Step 1 f(b) = .93970412 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 18 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 18 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | .6794376 .2367041 2.87 0.009 .1856815 1.173194 inflation | -.1636133 .045614 -3.59 0.002 -.2587624 -.0684641 gfcfgrow | .0980104 .0328853 2.98 0.007 .0294129 .166608 hfcegrow | .6692242 .1605369 4.17 0.000 .3343501 1.004098 tradeopen | -.0166245 .0134452 -1.24 0.231 -.0446707 .0114218 | lrgdpopc | L1. | -1.220907 1.060466 -1.15 0.263 -3.433 .991187 | _cons | 14.09685 10.72928 1.31 0.204 -8.284046 36.47775 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.inflation L3.inflation L2.gfcfgrow L3.gfcfgrow L2.hfcegrow L3.hfcegrow L2.lrgdpopc L3.lrgdpopc 2, model(level): L1.D.inflation L2.D.inflation L1.D.gfcfgrow L2.D.gfcfgrow L1.D.hfcegrow L2.D.hfcegrow L1.D.lrgdpopc L2.D.lrgdpopc 3, model(level): sme 4, model(level): _cons
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegr > ow lrgdpopc , lag(2 3) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 2) diff > collapse model(level)) iv(sme,model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 6.5119593 Fitting reduced model 1: Step 1 f(b) = 1.7495734 Fitting reduced model 2: Step 1 f(b) = 2.0088941 Fitting reduced model 3: Step 1 f(b) = 6.4917358 Fitting no-level model: Step 1 f(b) = 2.0088941 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 22 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 22 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | .9128761 .2466531 3.70 0.001 .3983667 1.427386 inflation | -.1421567 .0417887 -3.40 0.003 -.2293263 -.0549871 gfcfgrow | .1127319 .0368393 3.06 0.006 .0358865 .1895773 hfcegrow | .6901123 .1433662 4.81 0.000 .3910556 .989169 tradeopen | -.0239375 .0116199 -2.06 0.053 -.0481762 .0003012 | lrgdpopc | L1. | -.8863398 .8513687 -1.04 0.310 -2.662264 .8895842 | _cons | 10.84036 8.734277 1.24 0.229 -7.379021 29.05974 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L3.gdpgrow L2.inflation L3.inflation L2.gfcfgrow L3.gfcfgrow L2.hfcegrow L3.hfcegrow L2.lrgdpopc L3.lrgdpopc 2, model(level): L1.D.gdpgrow L2.D.gdpgrow L1.D.inflation L2.D.inflation L1.D.gfcfgrow L2.D.gfcfgrow L1.D.hfcegrow L2.D.hfcegrow L1.D.lrgdpopc L2.D.lrgdpopc 3, model(level): sme 4, model(level): _cons
xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff collapse model(level)) iv(sme,model(level)) one vce(cl id) small overid
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegr > ow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff > collapse model(level)) iv(sme,model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 3.170343 Fitting reduced model 1: Step 1 f(b) = 8.867e-16 Fitting reduced model 2: Step 1 f(b) = 1.413e-14 Fitting reduced model 3: Step 1 f(b) = 3.1380076 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 12 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 12 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | 1.371398 .415195 3.30 0.004 .5053168 2.23748 inflation | -.2012583 .0656044 -3.07 0.006 -.3381068 -.0644099 gfcfgrow | .1756431 .0365951 4.80 0.000 .0993071 .2519791 hfcegrow | .6537494 .2542447 2.57 0.018 .1234043 1.184095 tradeopen | -.0440692 .0166601 -2.65 0.016 -.0788215 -.0093169 | lrgdpopc | L1. | -.3924132 1.467164 -0.27 0.792 -3.452864 2.668037 | _cons | 7.086845 15.30321 0.46 0.648 -24.8351 39.00879 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L2.inflation L2.gfcfgrow L2.hfcegrow L2.lrgdpopc 2, model(level): L1.D.gdpgrow L1.D.inflation L1.D.gfcfgrow L1.D.hfcegrow L1.D.lrgdpopc 3, model(level): sme 4, model(level): _cons
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegr > ow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff > collapse model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 3.1380076 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 11 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 11 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | -.64922 6.394653 -0.10 0.920 -13.98823 12.68979 inflation | -.1814501 .1103874 -1.64 0.116 -.4117143 .0488141 gfcfgrow | .181537 .0435933 4.16 0.000 .0906029 .2724712 hfcegrow | .6699812 .2849286 2.35 0.029 .0756305 1.264332 tradeopen | -.0526704 .0459819 -1.15 0.266 -.1485869 .0432461 | lrgdpopc | L1. | .1360665 2.8836 0.05 0.963 -5.879018 6.151151 | _cons | 3.10732 25.29937 0.12 0.903 -49.66625 55.88089 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L2.inflation L2.gfcfgrow L2.hfcegrow L2.lrgdpopc 2, model(level): L1.D.gdpgrow L1.D.inflation L1.D.gfcfgrow L1.D.hfcegrow L1.D.lrgdpopc 3, model(level): _cons
xtdpdgmm L(0/1).GDP Labor Capital Financial_Development Temperature, model(diff) collapse gmm(GDP Labor Capital , lag(2 4)) gmm(Financial_Development, lag(1 2)) gmm(Temperature, lag(. .)) two vce(r) overid nl(noserial)
xtabond2 L(0/1).GDP Labor Capital Financial_Development Temperature, gmmstyle(L.GDP L.Labor L.Capital L.Financial_Development , lag(1 3)) ivstyle(Temperature) robust twostep
xtabond2 L(0/1).GDP Labor Capital Financial_Development Temperature, gmmstyle(L.GDP L.Labor L.Capital L.Financial_Development , lag(1 3)) ivstyle(Temperature) robust twostep noleveleq
xtreg GDP Labor Capital Financial_Development Temperature, fe r
Leave a comment: