Code:
xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff collapse model(level)) iv(sme,model(level)) one vce(cl id) small overid
Code:
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegr > ow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff > collapse model(level)) iv(sme,model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 3.170343 Fitting reduced model 1: Step 1 f(b) = 8.867e-16 Fitting reduced model 2: Step 1 f(b) = 1.413e-14 Fitting reduced model 3: Step 1 f(b) = 3.1380076 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 12 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 12 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | 1.371398 .415195 3.30 0.004 .5053168 2.23748 inflation | -.2012583 .0656044 -3.07 0.006 -.3381068 -.0644099 gfcfgrow | .1756431 .0365951 4.80 0.000 .0993071 .2519791 hfcegrow | .6537494 .2542447 2.57 0.018 .1234043 1.184095 tradeopen | -.0440692 .0166601 -2.65 0.016 -.0788215 -.0093169 | lrgdpopc | L1. | -.3924132 1.467164 -0.27 0.792 -3.452864 2.668037 | _cons | 7.086845 15.30321 0.46 0.648 -24.8351 39.00879 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L2.inflation L2.gfcfgrow L2.hfcegrow L2.lrgdpopc 2, model(level): L1.D.gdpgrow L1.D.inflation L1.D.gfcfgrow L1.D.hfcegrow L1.D.lrgdpopc 3, model(level): sme 4, model(level): _cons
Code:
. xtdpdgmm gdpgrow sme inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc ,gmm(gdpgrow inflation gfcfgrow hfcegr > ow lrgdpopc , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow lrgdpopc, lag(1 1) diff > collapse model(level)) one vce(cl id) small overid Generalized method of moments estimation Fitting full model: Step 1 f(b) = 3.1380076 Group variable: id Number of obs = 919 Time variable: year Number of groups = 21 Moment conditions: linear = 11 Obs per group: min = 6 nonlinear = 0 avg = 43.7619 total = 11 max = 46 (Std. err. adjusted for 21 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- sme | -.64922 6.394653 -0.10 0.920 -13.98823 12.68979 inflation | -.1814501 .1103874 -1.64 0.116 -.4117143 .0488141 gfcfgrow | .181537 .0435933 4.16 0.000 .0906029 .2724712 hfcegrow | .6699812 .2849286 2.35 0.029 .0756305 1.264332 tradeopen | -.0526704 .0459819 -1.15 0.266 -.1485869 .0432461 | lrgdpopc | L1. | .1360665 2.8836 0.05 0.963 -5.879018 6.151151 | _cons | 3.10732 25.29937 0.12 0.903 -49.66625 55.88089 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L2.inflation L2.gfcfgrow L2.hfcegrow L2.lrgdpopc 2, model(level): L1.D.gdpgrow L1.D.inflation L1.D.gfcfgrow L1.D.hfcegrow L1.D.lrgdpopc 3, model(level): _cons
I am sorry I have taken time from you. And I appreciate your generous, kind help.
Many thanks.
TS
Leave a comment: