Thank you for your help.
Code:
. xtdpdgmm gdpgrow smei4 inflation gfcfgrow hfcegrow tradeopen l.lrgdpopc if id~=10,gmm(gdpgrow inflation gfcf > grow hfcegrow , lag(2 2) collapse model(diff)) gmm(gdpgrow inflation gfcfgrow hfcegrow , lag(1 1) diff colla > pse model(level)) iv(smei4,model(level)) one vce(cl id) small Generalized method of moments estimation Fitting full model: Step 1 f(b) = .47394918 Group variable: id Number of obs = 541 Time variable: year Number of groups = 20 Moment conditions: linear = 10 Obs per group: min = 3 nonlinear = 0 avg = 27.05 total = 10 max = 29 (Std. err. adjusted for 20 clusters in id) ------------------------------------------------------------------------------ | Robust gdpgrow | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- smei4 | .2788973 .0764853 3.65 0.002 .1188117 .4389829 inflation | -.026597 .1618153 -0.16 0.871 -.3652804 .3120864 gfcfgrow | .2534804 .0579185 4.38 0.000 .1322556 .3747052 hfcegrow | .2839644 .2120591 1.34 0.196 -.1598803 .7278091 tradeopen | -.0363412 .008684 -4.18 0.001 -.054517 -.0181655 | lrgdpopc | L1. | -.6204065 1.328873 -0.47 0.646 -3.40177 2.160957 | _cons | 9.264398 13.73028 0.67 0.508 -19.47342 38.00221 ------------------------------------------------------------------------------ Instruments corresponding to the linear moment conditions: 1, model(diff): L2.gdpgrow L2.inflation L2.gfcfgrow L2.hfcegrow 2, model(level): L1.D.gdpgrow L1.D.inflation L1.D.gfcfgrow L1.D.hfcegrow 3, model(level): smei4 4, model(level): _cons
Leave a comment: