Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Raymond Zhang
    replied
    @Sebastian Kripfganz I have recieved your email.Thank you very much.


    Best Regards.
    Raymond

    Leave a comment:


  • Sebastian Kripfganz
    replied
    If you are located in China, there might be firewall restrictions that prevent you from installing Stata packages directly from my website. As the new version is not yet available on SSC, I have just sent you the source files for a local installation by e-mail.

    Leave a comment:


  • Raymond Zhang
    replied
    Dear sebastian Kripfganz,I have tried to update xtdpdgmm from http://www.kripfganz.de/stata/.But I failed to update it.I have sent en email to you.Can you send me the updated adofile and helpfile ?Thanks in advance.



    Best.
    Raymond

    Leave a comment:


  • Sebastian Kripfganz
    replied
    There is a new update to version 2.3.2 now available on my personal website:
    Code:
    net install xtdpdgmm, from(http://www.kripfganz.de/stata/) replace
    This update fixes an annoying bug that produced an error message when the command was run with the nl(noserial) option on a data set in which the panel identifier was named different than "id". (Apparently, all of my test data sets had a panel identifier variable named "id" which is why I never noticed this bug.) Many thanks to Luca Uberti for flagging this problem.

    I used this opportunity to add another option to the estat mmsc postestimation command. The penalty term for the BIC and HQIC versions of the model and moment selection criteria depend on a measure of the sample size, ln(N) and ln(ln(N)), respectively. So far, for N the command always used the number of groups (panels). Now, there is a new option that allows to choose N either as the number of groups, n(groups), the number of clusters, n(cluster), or the total number of observations, n(obs).
    If the xtdpdgmm command was run with the vce(cluster) option, the default for estat mmsc is now to use the number of clusters for N. Otherwise, it remains the number of groups. (There is actually a related issue with the conventional BIC after other estimation commands; see help bic note.)

    Leave a comment:


  • Nadir Ismayilov
    replied
    Dear Sebastian,

    I need your help regarding the model. ROA,𝑖𝑡= 𝛼ROA𝑖 + 𝜑ROA𝑖𝑡−1 + ∑ δROA_sic_t SIC_Year sic_t+ εROA,𝑖𝑡;

    where:
    1)SIC_Year sic_t is the year-specific industry fixed effect.
    2)Coefficient 𝛼ROA𝑖 is the firm-specific constant
    3)𝜑s are the first-order autoregressive coefficient estimates.

    I have used XTABOND command as follows.

    . xtabond ROA year2011-year2019 fyear

    fyear is time variable in my dataset. It is unbalaced panel data. Gvkey are firm name codes, SIC variable is industry level codes.

    Click image for larger version

Name:	s.png
Views:	3
Size:	24.8 KB
ID:	1586636


    In the studies it is written: "We use the deviations of the actual values from the forecasts (i.e., forecast errors) as the measure of abnormal profitability (aROAit) to find firms with greater-than-normal profitability (aROAit>0)"

    How would you find forecast and their deviations from actual values? I tried to do it with the forecasting of Stata but as it is unbalanced panel data I receive error each time. With the predict comman I get some big numbers each time, so I am wondering if my Xtabond command was correct and if it was same as in study(not sure if I correctly do it with SIC codes)?

    How would you do it with forecast?

    Best Regards,
    Nadir

    Leave a comment:


  • Lin Liu
    replied
    That's great. Thank you.

    Leave a comment:


  • Sebastian Kripfganz
    replied
    Try
    Code:
    test _b[d_L,deputyd:_cons] = _b[o_L,officiald:_cons]

    Leave a comment:


  • Lin Liu
    replied
    what's wrong with this?
    . xtdpdgmm L(0/1).slackz munificence complex dynamics area L(0/1).logasset L(0/1).roa agef edu L(0/1).tenure sex agee L(0/1).deputyd ,
    > model(fod) collapse gmm(slackz, lag(1 3)) gmm(munificence, lag(0 1)) gmm(complex, lag(0 1)) gmm(dynamics, lag(0 1)) gmm(area, lag(0 1) ) gmm
    > (logasset, lag(1 2)) gmm(roa, lag(1 2)) gmm(agef, lag(0 2)) gmm(edu, lag(0 1)) gmm(sex, lag(0 0) ) gmm(tenure, lag(0 3)) gmm(agee, lag(0 0)
    > ) gmm(deputyd, lag(1 2)) gmm(area, lag(0 0) model(md)) gmm( sex, lag(0 0) model(md)) gmm(agee, lag(0 0) model(md)) gmm(slackz, lag (1 1) diff
    > model(level)) gmm(munificence, lag(0 0) diff model(level)) gmm(complex, lag(0 0) diff model(level)) gmm(dynamics, lag(0 0) diff model(level
    > )) gmm(area, lag(0 0) model(level)) gmm( logasset, lag(1 1) diff model(level)) gmm( roa, lag(1 1) diff model(level)) gmm( agef, lag(0 0) diff
    > model(level)) gmm(edu, lag(0 0) diff model(level)) gmm(tenure, lag(0 0) diff model(level)) gmm(sex, lag(0 0) model(level)) gmm(agee, lag(0
    > 0) model(level)) gmm(deputyd, lag(1 1) diff model(level)) teffects two vce(r) overid auxiliary

    Generalized method of moments estimation

    Fitting full model:
    Step 1 f(b) = .21961324
    Step 2 f(b) = .04905417

    Fitting reduced model 1:
    Step 1 f(b) = .04378765

    Fitting reduced model 2:
    Step 1 f(b) = .04737229

    Fitting reduced model 3:
    Step 1 f(b) = .04174331

    Fitting reduced model 4:
    Step 1 f(b) = .04725824

    Fitting reduced model 5:
    Step 1 f(b) = .04894016

    Fitting reduced model 6:
    Step 1 f(b) = .04896063

    Fitting reduced model 7:
    Step 1 f(b) = .04693545

    Fitting reduced model 8:
    Step 1 f(b) = .04642574

    Fitting reduced model 9:
    Step 1 f(b) = .04471508

    Fitting reduced model 10:
    Step 1 f(b) = .04683552

    Fitting reduced model 11:
    Step 1 f(b) = .04554952

    Fitting reduced model 12:
    Step 1 f(b) = .04759769

    Fitting reduced model 13:
    Step 1 f(b) = .04775263

    Fitting reduced model 15:
    Step 1 f(b) = .04901515

    Fitting reduced model 16:
    Step 1 f(b) = .04815328

    Fitting reduced model 17:
    Step 1 f(b) = .04883611

    Fitting reduced model 18:
    Step 1 f(b) = .04345726

    Fitting reduced model 19:
    Step 1 f(b) = .04868351

    Fitting reduced model 20:
    Step 1 f(b) = .04871824

    Fitting reduced model 21:
    Step 1 f(b) = .04833418

    Fitting reduced model 22:
    Step 1 f(b) = .04895118

    Fitting reduced model 23:
    Step 1 f(b) = .0457555

    Fitting reduced model 24:
    Step 1 f(b) = .04576668

    Fitting reduced model 25:
    Step 1 f(b) = .04623669

    Fitting reduced model 26:
    Step 1 f(b) = .04865459

    Fitting reduced model 27:
    Step 1 f(b) = .04898542

    Fitting reduced model 28:
    Step 1 f(b) = .04787909

    Fitting reduced model 29:
    Step 1 f(b) = .04526437

    Fitting reduced model 30:
    Step 1 f(b) = .03214391

    Fitting no-mdev model:
    Step 1 f(b) = .04428694

    Fitting no-level model:
    Step 1 f(b) = .0033406

    Group variable: code Number of obs = 1142
    Time variable: year Number of groups = 257

    Moment conditions: linear = 49 Obs per group: min = 1
    nonlinear = 0 avg = 4.44358
    total = 49 max = 8

    ------------------------------------------------------------------------------
    slackz | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    /L.slackz | .712158 .1045299 6.81 0.000 .5072831 .9170328
    /munificence | -.3096574 .8710623 -0.36 0.722 -2.016908 1.397593
    /complex | .0136566 .0495609 0.28 0.783 -.0834811 .1107942
    /dynamics | -5.158069 54.91996 -0.09 0.925 -112.7992 102.4831
    /area | -.3154719 .1799491 -1.75 0.080 -.6681656 .0372218
    /logasset | 7.155498 2.668933 2.68 0.007 1.924485 12.38651
    /L.logasset | -8.373998 2.782808 -3.01 0.003 -13.8282 -2.919795
    /roa | -16.33088 8.771663 -1.86 0.063 -33.52302 .8612657
    /L.roa | 8.227022 5.280975 1.56 0.119 -2.123498 18.57754
    /agef | .1133634 .0963832 1.18 0.240 -.0755442 .3022709
    /edu | -.501057 .3031709 -1.65 0.098 -1.095261 .0931471
    /tenure | .0153419 .0475422 0.32 0.747 -.077839 .1085228
    /L.tenure | .0190134 .0677046 0.28 0.779 -.1136852 .1517119
    /sex | .7554232 .468428 1.61 0.107 -.1626789 1.673525
    /agee | -.0292742 .0188381 -1.55 0.120 -.0661961 .0076477
    /deputyd | 1.565541 1.06155 1.47 0.140 -.515058 3.646141
    /L.deputyd | -1.890005 1.075679 -1.76 0.079 -3.998297 .2182872
    2005.year | .3553894 .2172804 1.64 0.102 -.0704723 .7812512
    2006.year | .304873 .2516098 1.21 0.226 -.1882731 .7980191
    2007.year | .2514045 .274264 0.92 0.359 -.2861431 .7889521
    2008.year | .6769215 .4010137 1.69 0.091 -.109051 1.462894
    2009.year | .747258 .3946966 1.89 0.058 -.0263332 1.520849
    2010.year | .9056145 .4358076 2.08 0.038 .0514473 1.759782
    2011.year | .7428411 .4927214 1.51 0.132 -.2228752 1.708557
    /_cons | 12.84346 5.229984 2.46 0.014 2.592877 23.09404
    ------------------------------------------------------------------------------
    Instruments corresponding to the linear moment conditions:
    1, model(fodev):
    L1.slackz L2.slackz L3.slackz
    2, model(fodev):
    munificence L1.munificence
    3, model(fodev):
    complex L1.complex
    4, model(fodev):
    dynamics L1.dynamics
    5, model(fodev):
    area
    6, model(fodev):
    L1.logasset L2.logasset
    7, model(fodev):
    L1.roa L2.roa
    8, model(fodev):
    agef L2.agef
    9, model(fodev):
    edu L1.edu
    10, model(fodev):
    sex
    11, model(fodev):
    tenure L1.tenure L2.tenure L3.tenure
    12, model(fodev):
    agee
    13, model(fodev):
    L1.deputyd L2.deputyd
    15, model(mdev):
    sex
    16, model(mdev):
    agee
    17, model(level):
    L1.D.slackz
    18, model(level):
    D.munificence
    19, model(level):
    D.complex
    20, model(level):
    D.dynamics
    21, model(level):
    area
    22, model(level):
    L1.D.logasset
    23, model(level):
    L1.D.roa
    24, model(level):
    D.agef
    25, model(level):
    D.edu
    26, model(level):
    D.tenure
    27, model(level):
    sex
    28, model(level):
    agee
    29, model(level):
    L1.D.deputyd
    30, model(level):
    2005bn.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
    31, model(level):
    _cons

    . est store d

    . xtdpdgmm L(0/1).slackz munificence complex dynamics area L(0/1).logasset L(0/1).roa agef edu tenure sex agee L(0/1).officiald , model
    > (fod) collapse gmm(slackz, lag(1 3)) gmm(munificence, lag(0 2)) gmm(complex, lag(0 2)) gmm(dynamics, lag(0 2)) gmm(area, lag(0 2)) gmm(logas
    > set, lag(1 3)) gmm(roa, lag(1 3)) gmm(agef, lag(0 2)) gmm(edu, lag(0 1)) gmm( sex, lag(0 2) ) gmm(tenure, lag(0 2)) gmm(agee, lag(0 2)) gmm
    > (officiald, lag(1 3)) gmm(area, lag(0 0) model(md)) gmm( sex, lag(0 0) model(md)) gmm(agee, lag(0 0) model(md)) gmm(slackz, lag(1 1) diff mo
    > del(level)) gmm(munificence, lag(0 0) diff model(level)) gmm(complex, lag(0 0) diff model(level)) gmm(dynamics, lag(0 0) diff model(level))
    > gmm(area, lag(0 0) model(level)) gmm( logasset, lag(1 1) diff model(level)) gmm( roa, lag(1 1) diff model(level)) gmm( agef, lag(0 0) diff mo
    > del(level)) gmm(edu, lag(0 0) diff model(level)) gmm(tenure, lag(0 0) diff model(level)) gmm(sex, lag(0 0) model(level)) gmm(agee, lag(0 0)
    > model(level)) gmm(officiald, lag(1 1) diff model(level)) teffects two vce(r) overid auxiliary

    Generalized method of moments estimation

    Fitting full model:
    Step 1 f(b) = .21879516
    Step 2 f(b) = .0895368

    Fitting reduced model 1:
    Step 1 f(b) = .07797342

    Fitting reduced model 2:
    Step 1 f(b) = .07882463

    Fitting reduced model 3:
    Step 1 f(b) = .07606501

    Fitting reduced model 4:
    Step 1 f(b) = .07926185

    Fitting reduced model 5:
    Step 1 f(b) = .08893557

    Fitting reduced model 6:
    Step 1 f(b) = .08534523

    Fitting reduced model 7:
    Step 1 f(b) = .08495086

    Fitting reduced model 8:
    Step 1 f(b) = .08775046

    Fitting reduced model 9:
    Step 1 f(b) = .07315281

    Fitting reduced model 10:
    Step 1 f(b) = .07129769

    Fitting reduced model 11:
    Step 1 f(b) = .08573825

    Fitting reduced model 12:
    Step 1 f(b) = .07303121

    Fitting reduced model 13:
    Step 1 f(b) = .08466086

    Fitting reduced model 15:
    Step 1 f(b) = .08889474

    Fitting reduced model 16:
    Step 1 f(b) = .08735535

    Fitting reduced model 17:
    Step 1 f(b) = .08696995

    Fitting reduced model 18:
    Step 1 f(b) = .08947708

    Fitting reduced model 19:
    Step 1 f(b) = .08952212

    Fitting reduced model 20:
    Step 1 f(b) = .08911202

    Fitting reduced model 21:
    Step 1 f(b) = .08279975

    Fitting reduced model 22:
    Step 1 f(b) = .08536359

    Fitting reduced model 23:
    Step 1 f(b) = .08768312

    Fitting reduced model 24:
    Step 1 f(b) = .08707116

    Fitting reduced model 25:
    Step 1 f(b) = .08927467

    Fitting reduced model 26:
    Step 1 f(b) = .08936924

    Fitting reduced model 27:
    Step 1 f(b) = .08820959

    Fitting reduced model 28:
    Step 1 f(b) = .08916825

    Fitting reduced model 29:
    Step 1 f(b) = .08449728

    Fitting reduced model 30:
    Step 1 f(b) = .06366293

    Fitting no-mdev model:
    Step 1 f(b) = .08117433

    Fitting no-level model:
    Step 1 f(b) = .04141188

    Group variable: code Number of obs = 1142
    Time variable: year Number of groups = 257

    Moment conditions: linear = 59 Obs per group: min = 1
    nonlinear = 0 avg = 4.44358
    total = 59 max = 8

    ------------------------------------------------------------------------------
    slackz | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    /L.slackz | .705772 .1192805 5.92 0.000 .4719866 .9395575
    /munificence | -.4403346 .8550542 -0.51 0.607 -2.11621 1.235541
    /complex | -.0347037 .0459247 -0.76 0.450 -.1247144 .055307
    /dynamics | 59.96618 56.23615 1.07 0.286 -50.25464 170.187
    /area | .0132941 .1548448 0.09 0.932 -.2901961 .3167843
    /logasset | 4.962371 2.576222 1.93 0.054 -.086932 10.01167
    /L.logasset | -5.606148 2.867325 -1.96 0.051 -11.226 .0137069
    /roa | -17.11063 5.502293 -3.11 0.002 -27.89493 -6.326336
    /L.roa | 10.60277 3.994177 2.65 0.008 2.774331 18.43122
    /agef | .0437009 .1054893 0.41 0.679 -.1630544 .2504561
    /edu | .0413938 .2862075 0.14 0.885 -.5195625 .6023501
    /tenure | .0048285 .0490966 0.10 0.922 -.0913991 .101056
    /sex | .3432621 .6145907 0.56 0.576 -.8613135 1.547838
    /agee | .0068542 .0191801 0.36 0.721 -.0307382 .0444465
    /officiald | 1.023247 .5825883 1.76 0.079 -.1186047 2.165099
    /L.officiald | -1.720383 .6982176 -2.46 0.014 -3.088865 -.351902
    2005.year | .4571604 .2177951 2.10 0.036 .0302897 .884031
    2006.year | .3961391 .2675335 1.48 0.139 -.128217 .9204952
    2007.year | .5708944 .254941 2.24 0.025 .0712192 1.07057
    2008.year | .7871243 .4278661 1.84 0.066 -.0514777 1.625726
    2009.year | .8271088 .4124585 2.01 0.045 .018705 1.635513
    2010.year | 1.027484 .4636634 2.22 0.027 .1187209 1.936248
    2011.year | .7870365 .5163632 1.52 0.127 -.2250167 1.79909
    /_cons | 2.834887 5.29475 0.54 0.592 -7.542632 13.21241
    ------------------------------------------------------------------------------
    Instruments corresponding to the linear moment conditions:
    1, model(fodev):
    L1.slackz L2.slackz L3.slackz
    2, model(fodev):
    munificence L1.munificence L2.munificence
    3, model(fodev):
    complex L1.complex L2.complex
    4, model(fodev):
    dynamics L1.dynamics L2.dynamics
    5, model(fodev):
    area L2.area
    6, model(fodev):
    L1.logasset L2.logasset L3.logasset
    7, model(fodev):
    L1.roa L2.roa L3.roa
    8, model(fodev):
    agef L2.agef
    9, model(fodev):
    edu L1.edu
    10, model(fodev):
    sex L1.sex L2.sex
    11, model(fodev):
    tenure L1.tenure L2.tenure
    12, model(fodev):
    agee L1.agee L2.agee
    13, model(fodev):
    L1.officiald L2.officiald L3.officiald
    15, model(mdev):
    sex
    16, model(mdev):
    agee
    17, model(level):
    L1.D.slackz
    18, model(level):
    D.munificence
    19, model(level):
    D.complex
    20, model(level):
    D.dynamics
    21, model(level):
    area
    22, model(level):
    L1.D.logasset
    23, model(level):
    L1.D.roa
    24, model(level):
    D.agef
    25, model(level):
    D.edu
    26, model(level):
    D.tenure
    27, model(level):
    sex
    28, model(level):
    agee
    29, model(level):
    L1.D.officiald
    30, model(level):
    2005bn.year 2006.year 2007.year 2008.year 2009.year 2010.year 2011.year
    31, model(level):
    _cons

    . est store o

    . suest d o

    Simultaneous results for d, o

    Number of obs = 1,142

    -------------------------------------------------------------------------------
    | Robust
    | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    d_L,slackz |
    _cons | .712158 .1241785 5.73 0.000 .4687726 .9555434
    --------------+----------------------------------------------------------------
    d_munificence |
    _cons | -.3096574 1.348379 -0.23 0.818 -2.952431 2.333116
    --------------+----------------------------------------------------------------
    d_complex |
    _cons | .0136566 .0717027 0.19 0.849 -.1268782 .1541913
    --------------+----------------------------------------------------------------
    d_dynamics |
    _cons | -5.158069 74.80452 -0.07 0.945 -151.7722 141.4561
    --------------+----------------------------------------------------------------
    d_area |
    _cons | -.3154719 .2452943 -1.29 0.198 -.7962398 .165296
    --------------+----------------------------------------------------------------
    d_logasset |
    _cons | 7.155498 3.376785 2.12 0.034 .5371209 13.77387
    --------------+----------------------------------------------------------------
    d_L,logasset |
    _cons | -8.373998 3.463342 -2.42 0.016 -15.16202 -1.585972
    --------------+----------------------------------------------------------------
    d_roa |
    _cons | -16.33088 9.433864 -1.73 0.083 -34.82091 2.159156
    --------------+----------------------------------------------------------------
    d_L,roa |
    _cons | 8.227022 5.302617 1.55 0.121 -2.165917 18.61996
    --------------+----------------------------------------------------------------
    d_agef |
    _cons | .1133634 .1095392 1.03 0.301 -.1013295 .3280562
    --------------+----------------------------------------------------------------
    d_edu |
    _cons | -.501057 .3479369 -1.44 0.150 -1.183001 .1808867
    --------------+----------------------------------------------------------------
    d_tenure |
    _cons | .0153419 .0756236 0.20 0.839 -.1328777 .1635615
    --------------+----------------------------------------------------------------
    d_L,tenure |
    _cons | .0190134 .0887909 0.21 0.830 -.1550136 .1930403
    --------------+----------------------------------------------------------------
    d_sex |
    _cons | .7554232 .561197 1.35 0.178 -.3445028 1.855349
    --------------+----------------------------------------------------------------
    d_agee |
    _cons | -.0292742 .0263493 -1.11 0.267 -.0809178 .0223694
    --------------+----------------------------------------------------------------
    d_deputyd |
    _cons | 1.565541 2.45065 0.64 0.523 -3.237644 6.368727
    --------------+----------------------------------------------------------------
    d_L,deputyd |
    _cons | -1.890005 2.42004 -0.78 0.435 -6.633196 2.853186
    --------------+----------------------------------------------------------------
    d_2005,year |
    _cons | .3553894 .35439 1.00 0.316 -.3392022 1.049981
    --------------+----------------------------------------------------------------
    d_2006,year |
    _cons | .304873 .3598552 0.85 0.397 -.4004301 1.010176
    --------------+----------------------------------------------------------------
    d_2007,year |
    _cons | .2514045 .4118691 0.61 0.542 -.555844 1.058653
    --------------+----------------------------------------------------------------
    d_2008,year |
    _cons | .6769215 .4867027 1.39 0.164 -.2769983 1.630841
    --------------+----------------------------------------------------------------
    d_2009,year |
    _cons | .747258 .4898263 1.53 0.127 -.212784 1.7073
    --------------+----------------------------------------------------------------
    d_2010,year |
    _cons | .9056145 .5814301 1.56 0.119 -.2339677 2.045197
    --------------+----------------------------------------------------------------
    d_2011,year |
    _cons | .7428411 .5726409 1.30 0.195 -.3795145 1.865197
    --------------+----------------------------------------------------------------
    d__cons |
    _cons | 12.84346 7.006265 1.83 0.067 -.8885694 26.57548
    --------------+----------------------------------------------------------------
    o_L,slackz |
    _cons | .705772 .1116469 6.32 0.000 .4869481 .9245959
    --------------+----------------------------------------------------------------
    o_munificence |
    _cons | -.4403346 1.11817 -0.39 0.694 -2.631908 1.751239
    --------------+----------------------------------------------------------------
    o_complex |
    _cons | -.0347037 .058277 -0.60 0.552 -.1489245 .0795171
    --------------+----------------------------------------------------------------
    o_dynamics |
    _cons | 59.96618 57.7011 1.04 0.299 -53.1259 173.0583
    --------------+----------------------------------------------------------------
    o_area |
    _cons | .0132941 .1780203 0.07 0.940 -.3356192 .3622074
    --------------+----------------------------------------------------------------
    o_logasset |
    _cons | 4.962371 3.533726 1.40 0.160 -1.963606 11.88835
    --------------+----------------------------------------------------------------
    o_L,logasset |
    _cons | -5.606148 3.543803 -1.58 0.114 -12.55187 1.339579
    --------------+----------------------------------------------------------------
    o_roa |
    _cons | -17.11063 6.531034 -2.62 0.009 -29.91122 -4.31004
    --------------+----------------------------------------------------------------
    o_L,roa |
    _cons | 10.60277 4.084201 2.60 0.009 2.597888 18.60766
    --------------+----------------------------------------------------------------
    o_agef |
    _cons | .0437009 .1018201 0.43 0.668 -.1558629 .2432646
    --------------+----------------------------------------------------------------
    o_edu |
    _cons | .0413938 .3063771 0.14 0.893 -.5590943 .6418819
    --------------+----------------------------------------------------------------
    o_tenure |
    _cons | .0048285 .0539864 0.09 0.929 -.100983 .1106399
    --------------+----------------------------------------------------------------
    o_sex |
    _cons | .3432621 .8802884 0.39 0.697 -1.382072 2.068596
    --------------+----------------------------------------------------------------
    o_agee |
    _cons | .0068542 .0200002 0.34 0.732 -.0323456 .0460539
    --------------+----------------------------------------------------------------
    o_officiald |
    _cons | 1.023247 1.430928 0.72 0.475 -1.78132 3.827815
    --------------+----------------------------------------------------------------
    o_L,officiald |
    _cons | -1.720383 1.335567 -1.29 0.198 -4.338046 .8972792
    --------------+----------------------------------------------------------------
    o_2005,year |
    _cons | .4571604 .33954 1.35 0.178 -.2083257 1.122646
    --------------+----------------------------------------------------------------
    o_2006,year |
    _cons | .3961391 .3428259 1.16 0.248 -.2757874 1.068066
    --------------+----------------------------------------------------------------
    o_2007,year |
    _cons | .5708944 .3403995 1.68 0.094 -.0962763 1.238065
    --------------+----------------------------------------------------------------
    o_2008,year |
    _cons | .7871243 .4595304 1.71 0.087 -.1135387 1.687787
    --------------+----------------------------------------------------------------
    o_2009,year |
    _cons | .8271088 .476522 1.74 0.083 -.1068572 1.761075
    --------------+----------------------------------------------------------------
    o_2010,year |
    _cons | 1.027484 .5088123 2.02 0.043 .0302307 2.024738
    --------------+----------------------------------------------------------------
    o_2011,year |
    _cons | .7870365 .5419654 1.45 0.146 -.2751962 1.849269
    --------------+----------------------------------------------------------------
    o__cons |
    _cons | 2.834887 6.433989 0.44 0.659 -9.7755 15.44527
    -------------------------------------------------------------------------------

    . test [d_L,deputyd=o_L,officiald]
    last test not found
    r(302);

    . test d_L,deputyd=o_L,officiald
    invalid 'officiald'
    r(198);

    . test d_L.deputyd=o_L.officiald
    d_L: operator invalid
    r(198);

    . test [d_L.deputyd=o_L.officiald]
    equation d_L not found
    r(303);

    .

    Leave a comment:


  • Sebastian Kripfganz
    replied
    Assuming that the coefficients are at a comparable scale, you could probably use the suest command to combine the two regressions. Then you can test for equality of the coefficients with the test command. For this to work, you need to run the two xtdpdgmm regressions with the auxiliary option, store the results with estimates store, and then call suest with the two stored estimation results.

    Leave a comment:


  • Lin Liu
    replied
    I have two equations of dynamic panel data. One is y=b0+b1x1+b2x2+b3x3, and the other is y=A0+A1x1+A2x4+A3x5. I get the coefficients through the xtdpdgmm. Now, I want to compare b2 and A3 to know which has a larger effect on y. Would you give me some advice?

    Leave a comment:


  • Sebastian Kripfganz
    replied
    xtdpdgmm does not provide standardized regression coefficients. You would need to standardize all of your variables manually before running the regression.

    I can hardly imagine a situation in the context of dynamic panel models where this is meaningful. There is a lot of things that can go wrong and the interpretation of the results becomes anything than straightforward.

    Leave a comment:


  • Lin Liu
    replied
    Hello Dr. Kripfganz, how can i get standard regression coefficents from your xtdpdgmm? As far as I know,your xtdpdgmm presents nonstandard coefficents.

    Leave a comment:


  • Sebastian Kripfganz
    replied
    The GMM estimators implemented in xtdpdgmm (or xtabond2) are intended for setting with large N relative to T. Your data set does not really fit into that category. It neither fits into the large-N, large-T world. With small N, you cannot expect to reliably estimate the optimal weighting matrix. Thus, any two-step GMM estimator (that allows for arbitrary correlation within groups over time) is eliminated from the discussion. Similarly, it is not recommended to compute robust standard errors clustered at the group level. You could still use a conventional IV/2SLS estimator with ivregress or xtivreg.

    Leave a comment:


  • Piero Best
    replied
    Hello Dr. Kripfganz,
    I really appreciate all your work.

    I am currently having trouble with my dynamic model. N = 15. T = 64.
    The empiric evidence in my paper offers a variety of dynamic panels being made and because there is endogeneity I decided to give it a try to your work in order to achieve the best results.

    in xtabond2 I had the best model by making all my variables strictly exogenous and only having the lagged depedent variable in the gmm side. But that is not what I intended.

    For long panels, which dynamic panel model could I use as an alternative? Or should I just stay with a xtreg fe despite endogeneity being present?

    xtabond2 ROA L.ROA creditgrowth Liquidity Provsdefault RatioCapGlobal D.vix Buffer LCR NSFR RR Tier1, gmm(L.ROA. collapse) iv((creditgrowth Liquidity Provsdefault RatioCapGlobal D.vix Buffer LCR NSFR RR Tier1)) robust orthogonal pca

    also how can i run this xtabond2 model in xtdpdgmm.

    Again i really appreciate all your work, thank you in advance.

    Leave a comment:


  • Sebastian Kripfganz
    replied
    Maybe the following official video tutorial is of help:
    Profile plots and interaction plots in Stata®: Interactions of two continuous variables

    Leave a comment:

Working...
X