-
Login or Register
- Log in with
xtdpdgmm TC L.TC ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P ID* YD2 YD3 YD4, twostep vce(cluster cid) collapse gmmiv(L.TC, lag(0 0) model(fodev)) gmmiv(ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P, lag(0 1) model (fodev)) gmmiv(ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P, lag(0 0) model(mdev)) iv(ID* YD2 YD3 YD4, model (level)) nofooter
xtdpdgmm TC L.TC ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P ID* YD*,twostep vce(cluster cid) nl(noserial) gmmiv (L > .TC, lag(0 0) collapse model (fodev)) gmmiv (ROEP, lag(0 1) collapse model (fodev)) gmmiv (ROET3, lag(0 1) collapse model ( > fodev)) gmmiv (T3, lag(0 1) collapse model (fodev)) gmmiv (LFSIZE, lag(0 1) collapse model (fodev)) gmmiv (LFAGE, lag(0 1) > collapse model (fodev)) gmmiv (LEV, lag(0 1) collapse model (fodev)) gmmiv (RISK, lag(0 1) collapse model (fodev)) gmmiv (B > SZE, lag(0 1) collapse model (fodev)) gmmiv (IND_P, lag(0 1) collapse model (fodev)) gmmiv (CEOD, lag(0 1) collapse model ( > fodev)) gmmiv (ID*, lag(0 0) collapse model (level))gmmiv (YD*, lag(0 0) collapse model (level)) nofootnote Generalized method of moments estimation Fitting full model: Step 1: initial: f(b) = 18948478 alternative: f(b) = 18911537 rescale: f(b) = 7130192.3 Iteration 0: f(b) = 7130192.3 (not concave) Iteration 1: f(b) = 949992.37 (not concave) Iteration 2: f(b) = 278578.86 (not concave) Iteration 3: f(b) = 151619.85 (not concave) Iteration 4: f(b) = 120342.38 (not concave) Iteration 5: f(b) = 97568.645 (not concave) Iteration 6: f(b) = 81329.831 (not concave) Iteration 7: f(b) = 70476.142 (not concave) Iteration 8: f(b) = 59107.138 (not concave) Iteration 9: f(b) = 52308.153 (not concave) Iteration 10: f(b) = 43053.096 (not concave) Iteration 11: f(b) = 33223.071 (not concave) Iteration 12: f(b) = 29835.377 (not concave) Iteration 13: f(b) = 16909.705 (not concave) Iteration 14: f(b) = 15002.974 (not concave) Iteration 15: f(b) = 14232.683 (not concave) Iteration 16: f(b) = 7718.8442 (not concave) Iteration 17: f(b) = 7532.1743 (not concave) Iteration 18: f(b) = 7366.5578 (not concave) Iteration 19: f(b) = 7217.5852 (not concave) Iteration 20: f(b) = 7078.5422 (not concave) Iteration 21: f(b) = 6947.9369 (not concave) Iteration 22: f(b) = 6826.4571 (not concave) Iteration 23: f(b) = 6711.9993 (not concave) Iteration 24: f(b) = 6604.6715 (not concave) Iteration 25: f(b) = 6503.2638 (not concave) Iteration 26: f(b) = 6408.0337 (not concave) Iteration 27: f(b) = 6317.8641 (not concave) Iteration 28: f(b) = 6232.9867 (not concave) Iteration 29: f(b) = 6152.4831 (not concave) Iteration 30: f(b) = 6076.5509 (not concave) Iteration 31: f(b) = 6004.4055 (not concave) Iteration 32: f(b) = 5936.2248 (not concave) Iteration 33: f(b) = 5871.3394 (not concave) Iteration 34: f(b) = 5809.9042 (not concave) Iteration 35: f(b) = 5751.3458 (not concave) Iteration 36: f(b) = 5695.8011 (not concave) Iteration 37: f(b) = 5642.7766 (not concave) Iteration 38: f(b) = 5592.393 (not concave) Iteration 39: f(b) = 5544.2241 (not concave) Iteration 40: f(b) = 5498.3769 (not concave) Iteration 41: f(b) = 5454.4817 (not concave) Iteration 42: f(b) = 5412.6337 (not concave) Iteration 43: f(b) = 5372.5111 (not concave) Iteration 44: f(b) = 5334.1987 (not concave) Iteration 45: f(b) = 5297.4154 (not concave) Iteration 46: f(b) = 5262.2372 (not concave) Iteration 47: f(b) = 5228.4177 (not concave) Iteration 48: f(b) = 5196.0252 (not concave) Iteration 49: f(b) = 5164.8429 (not concave) Iteration 50: f(b) = 5134.9323 (not concave) Iteration 51: f(b) = 5106.1022 (not concave) Iteration 52: f(b) = 5078.4083 (not concave) Iteration 53: f(b) = 5051.6812 (not concave) Iteration 54: f(b) = 5025.9715 (not concave) Iteration 55: f(b) = 5001.1288 (not concave) Iteration 56: f(b) = 4977.1991 (not concave) Iteration 57: f(b) = 4954.0487 (not concave) Iteration 58: f(b) = 4931.7194 (not concave) Iteration 59: f(b) = 4910.0918 (not concave) Iteration 60: f(b) = 4889.2043 (not concave) Iteration 61: f(b) = 4868.9499 (not concave) Iteration 62: f(b) = 4849.3638 (not concave) Iteration 63: f(b) = 4830.3502 (not concave) Iteration 64: f(b) = 4811.9413 (not concave) Iteration 65: f(b) = 4794.0509 (not concave) Iteration 66: f(b) = 4776.7087 (not concave) Iteration 67: f(b) = 4759.837 (not concave) Iteration 68: f(b) = 4743.4633 (not concave) Iteration 69: f(b) = 4727.5172 (not concave) Iteration 70: f(b) = 4712.0243 (not concave) Iteration 71: f(b) = 4696.9209 (not concave) Iteration 72: f(b) = 4682.2305 (not concave) --Break--
xtreg TC ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P ID1 ID2 ID3 ID4 ID5 YD1 YD2 YD3 YD4, re vce (cluster cid) Random-effects GLS regression Number of obs = 1,005 Group variable: cid Number of groups = 201 R-sq: Obs per group: within = 0.2511 min = 5 between = 0.4991 avg = 5.0 overall = 0.4145 max = 5 Wald chi2(19) = 110.21 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 201 clusters in cid) ------------------------------------------------------------------------------ | Robust TC | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ROEP | 11.81289 3.695961 3.20 0.001 4.568942 19.05684 ROET3 | -.1636423 .0533337 -3.07 0.002 -.2681745 -.0591101 T3 | .9268638 .5153631 1.80 0.072 -.0832294 1.936957 LFSIZE | 21.30412 3.564797 5.98 0.000 14.31725 28.29099 LFAGE | -11.82151 7.810607 -1.51 0.130 -27.13002 3.486997 LEV | -20.22973 20.30682 -1.00 0.319 -60.03036 19.5709 RISK | 1.05389 13.74748 0.08 0.939 -25.89068 27.99846 CEOD | 23.02698 11.60022 1.99 0.047 .2909595 45.763 BSZE | 3.099498 1.382514 2.24 0.025 .3898211 5.809175 IND_P | .9007423 .5228959 1.72 0.085 -.1241148 1.925599 ID1 | -47.37584 32.43792 -1.46 0.144 -110.953 16.20132 ID2 | 3.698717 13.37388 0.28 0.782 -22.51361 29.91104 ID3 | -12.53249 14.97791 -0.84 0.403 -41.88865 16.82367 ID4 | 2.917077 18.43619 0.16 0.874 -33.21719 39.05134 ID5 | 30.07731 19.60296 1.53 0.125 -8.343787 68.4984 YD1 | 1.671931 4.416635 0.38 0.705 -6.984515 10.32838 YD2 | 1.6644 6.062894 0.27 0.784 -10.21865 13.54745 YD3 | 4.077982 5.29307 0.77 0.441 -6.296245 14.45221 YD4 | 15.10113 6.991724 2.16 0.031 1.397606 28.80466 _cons | -273.697 74.47474 -3.68 0.000 -419.6648 -127.7292 -------------+---------------------------------------------------------------- sigma_u | 53.650479 sigma_e | 56.558824 rho | .47362907 (fraction of variance due to u_i) ------------------------------------------------------------------------------
xtdpdgmm TC L.TC ROEP ROET3 T3 LFSIZE LFAGE LEV RISK CEOD BSZE IND_P ID* YD*,twostep vce(cluster cid) gmmiv (L.TC, lag(0 0) collapse model (fodev)) gmmiv (ROEP, lag(0 1) collapse model (fodev)) gmmiv (ROET3, lag(0 1) collapse model (fodev)) gmmiv (T3, lag(0 1) collapse model (fodev)) gmmiv (LFSIZE, lag(0 1) collapse model (fodev)) gmmiv (LFAGE, lag(0 1) collapse model (fodev)) gmmiv (LEV, lag(0 1) collapse model (fodev)) gmmiv (RISK, lag(0 1) collapse model (fodev)) gmmiv (BSZE, lag(0 1) collapse model (fodev)) gmmiv (IND_P, lag(0 1) collapse model (fodev)) gmmiv (CEOD, lag(0 1) collapse model (fodev)) gmmiv (ID*, lag(0 0) collapse model (level)) gmmiv (YD*, lag(0 0) collapse model (level)) nofootnote Generalized method of moments estimation Fitting full model: Step 1 f(b) = 380.3873 Step 2 f(b) = .02331842 Group variable: cid Number of obs = 804 Time variable: YEAR Number of groups = 201 Moment conditions: linear = 30 Obs per group: min = 4 nonlinear = 0 avg = 4 total = 30 max = 4 (Std. Err. adjusted for 201 clusters in cid) ------------------------------------------------------------------------------ | WC-Robust TC | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- TC | L1. | .0704489 .2947275 0.24 0.811 -.5072064 .6481041 | ROEP | -2.161121 7.234564 -0.30 0.765 -16.34061 12.01836 ROET3 | .0486878 .1103199 0.44 0.659 -.1675352 .2649108 T3 | -1.268114 3.028676 -0.42 0.675 -7.204211 4.667982 LFSIZE | -17.6046 79.81283 -0.22 0.825 -174.0349 138.8257 LFAGE | 121.1339 126.2982 0.96 0.338 -126.406 368.6738 LEV | -10.47428 151.6317 -0.07 0.945 -307.6669 286.7183 RISK | -25.74973 86.25241 -0.30 0.765 -194.8013 143.3019 CEOD | -70.64974 109.8793 -0.64 0.520 -286.0091 144.7096 BSZE | -1.578545 3.629034 -0.43 0.664 -8.691321 5.534232 IND_P | -1.513525 1.22047 -1.24 0.215 -3.905602 .8785514 ID1 | 18.11663 97.57612 0.19 0.853 -173.129 209.3623 ID2 | 7.156462 65.52682 0.11 0.913 -121.2737 135.5867 ID3 | 16.69424 106.4915 0.16 0.875 -192.0252 225.4136 ID4 | -28.0001 83.33812 -0.34 0.737 -191.3398 135.3396 ID5 | 42.28515 99.73981 0.42 0.672 -153.2013 237.7716 YD1 | -14.67081 27.28439 -0.54 0.591 -68.14724 38.80561 YD2 | -10.77153 18.99932 -0.57 0.571 -48.00952 26.46647 YD3 | -7.408057 9.57917 -0.77 0.439 -26.18288 11.36677 YD4 | 0 (omitted) _cons | 11.46227 760.6348 0.02 0.988 -1479.355 1502.279 ------------------------------------------------------------------------------ . estat overid Sargan-Hansen test of the overidentifying restrictions H0: overidentifying restrictions are valid 2-step moment functions, 2-step weighting matrix chi2(10) = 4.6870 Prob > chi2 = 0.9111 2-step moment functions, 3-step weighting matrix chi2(10) = 6.3643 Prob > chi2 = 0.7838 . estat serial Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = -0.3265 Prob > |z| = 0.7440 H0: no autocorrelation of order 2: z = -0.3837 Prob > |z| = 0.7012
global var1 ="hf hfhf lgdp lgdp2 L(0/1).(hflgdp)" xtabond2 L(0/1).ls_fdi $var1 yr2004-yr2015, gmm(ls_fdi, lag(2 3) coll) gmm(hf, lag(2 5) coll) gmm(hfhf, lag(2 5) coll) gmm(hflgdp, lag(2 5) coll) gmm(lgdp, lag(2 5) coll) gmm(lgdp2, lag(2 5) coll) iv(yr2004-yr2015) artest(10) noleveleq twostep svmat robust xtdpdgmm L(0/1).ls_fdi $var1 yr2004-yr2015, gmm(ls_fdi, lag(2 3) coll) gmm(hf, lag(2 5) coll) gmm(hfhf, lag(2 5) coll) gmm(hflgdp, lag(2 5) coll) gmm(lgdp, lag(2 5) coll) gmm(lgdp2, lag(2 5) coll) iv(yr2004-yr2015) model(diff) twostep overid vce(robust)
------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -4.09 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.16 Pr > z = 0.871 Arellano-Bond test for AR(3) in first differences: z = 0.49 Pr > z = 0.625 Arellano-Bond test for AR(4) in first differences: z = 0.17 Pr > z = 0.868 Arellano-Bond test for AR(5) in first differences: z = 0.09 Pr > z = 0.927 Arellano-Bond test for AR(6) in first differences: z = 0.50 Pr > z = 0.616 Arellano-Bond test for AR(7) in first differences: z = -0.17 Pr > z = 0.862 Arellano-Bond test for AR(8) in first differences: z = 0.09 Pr > z = 0.925 Arellano-Bond test for AR(9) in first differences: z = -0.31 Pr > z = 0.755 Arellano-Bond test for AR(10) in first differences:z = 0.28 Pr > z = 0.776 ------------------------------------------------------------------------------
Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = -0.0179 Prob > z = 0.9857 H0: no autocorrelation of order 2: z = -0.0023 Prob > z = 0.9982 H0: no autocorrelation of order 3: z = 0.0046 Prob > z = 0.9964 H0: no autocorrelation of order 4: z = 0.0064 Prob > z = 0.9949 H0: no autocorrelation of order 5: z = 0.0011 Prob > z = 0.9991 H0: no autocorrelation of order 6: z = 0.0090 Prob > z = 0.9928 H0: no autocorrelation of order 7: z = . Prob > z = . H0: no autocorrelation of order 8: z = . Prob > z = . H0: no autocorrelation of order 9: z = . Prob > z = . H0: no autocorrelation of order 10: z = 0.0029 Prob > z = 0.9977
adoupdate xtdpdgmm, update
estat mmsc model1 model2
Leave a comment: