Below is my command and result.
. xtmelogit dic year##newb##sole age sex marry edu_g2 f_size home wealth hh_incom p_pn pr_trans econpart2 house soc_r fam_r c_dx inhc || hhid: || id:
Refining starting values:
Iteration 0: log likelihood = -923.00221
Iteration 1: log likelihood = -917.17197
Iteration 2: log likelihood = -916.79587
Performing gradient-based optimization:
Iteration 0: log likelihood = -916.79587
Iteration 1: log likelihood = -916.7067
Iteration 2: log likelihood = -916.70603
Iteration 3: log likelihood = -916.70602
Mixed-effects logistic regression Number of obs = 1,520
----------------------------------------------------------------------------
| No. of Observations per Group Integration
Group Variable | Groups Minimum Average Maximum Points
----------------+-----------------------------------------------------------
hhid | 620 2 2.5 4 7
id | 760 2 2.0 2 7
----------------------------------------------------------------------------
Wald chi2(23) = 122.92
Log likelihood = -916.70602 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
dic | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
year |
2008 | -.2730442 .2375819 -1.15 0.250 -.7386962 .1926078
|
1.newb | -.1211041 .3129108 -0.39 0.699 -.734398 .4921898
|
year#newb |
2008 1 | .3815499 .3574489 1.07 0.286 -.3190371 1.082137
|
1.sole | -.4997881 .3289285 -1.52 0.129 -1.144476 .1449
|
year#sole |
2008 1 | .2052514 .3413537 0.60 0.548 -.4637896 .8742924
|
newb#sole |
1 1 | .5648403 .4266411 1.32 0.186 -.2713609 1.401042
|
year#newb#sole |
2008 1 1 | -.9253963 .5023913 -1.84 0.065 -1.910065 .0592726
|
age | -.0220127 .030512 -0.72 0.471 -.0818152 .0377898
sex | .2641683 .1906669 1.39 0.166 -.1095319 .6378685
marry | .56805 .3670882 1.55 0.122 -.1514297 1.28753
edu_g2 | -.2518682 .1399016 -1.80 0.072 -.5260703 .022334
f_size | .0081469 .0967724 0.08 0.933 -.1815236 .1978174
home | .3902715 .3192878 1.22 0.222 -.235521 1.016064
wealth | -.0010083 .0004767 -2.12 0.034 -.0019425 -.000074
hh_incom | -.0072073 .0061165 -1.18 0.239 -.0191955 .0047809
p_pn | -.0003896 .0001501 -2.60 0.009 -.0006838 -.0000954
pr_trans | .0000963 .0001529 0.63 0.529 -.0002033 .0003959
econpart2 | -.0624379 .1811537 -0.34 0.730 -.4174925 .2926168
house | .2714114 .2234762 1.21 0.225 -.1665939 .7094168
soc_r | -.3065462 .1520254 -2.02 0.044 -.6045106 -.0085818
fam_r | -.5668335 .168877 -3.36 0.001 -.8978263 -.2358407
c_dx | .5227505 .2146773 2.44 0.015 .1019907 .9435103
inhc | .6362042 .1810271 3.51 0.000 .2813976 .9910109
_cons | 1.869337 2.312023 0.81 0.419 -2.662145 6.40082
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hhid: Identity |
sd(_cons) | 1.118888 .1724824 .827122 1.513574
-----------------------------+------------------------------------------------
id: Identity |
sd(_cons) | .3130409 .5917043 .0077033 12.72117
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 38.10 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
================================================== ========
And I know for mixed model, we have to do LR test to decide Random Intercept or Random Slope model.
But my academic interest is get one beta, not to see the variation in population
so I didn't do that.
However, in the bottom of the result, there is
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 38.10 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
I want to interpret this part, but I cannot find proper reference....
Can anybody give me answer.................?
Thanks in advance!
. xtmelogit dic year##newb##sole age sex marry edu_g2 f_size home wealth hh_incom p_pn pr_trans econpart2 house soc_r fam_r c_dx inhc || hhid: || id:
Refining starting values:
Iteration 0: log likelihood = -923.00221
Iteration 1: log likelihood = -917.17197
Iteration 2: log likelihood = -916.79587
Performing gradient-based optimization:
Iteration 0: log likelihood = -916.79587
Iteration 1: log likelihood = -916.7067
Iteration 2: log likelihood = -916.70603
Iteration 3: log likelihood = -916.70602
Mixed-effects logistic regression Number of obs = 1,520
----------------------------------------------------------------------------
| No. of Observations per Group Integration
Group Variable | Groups Minimum Average Maximum Points
----------------+-----------------------------------------------------------
hhid | 620 2 2.5 4 7
id | 760 2 2.0 2 7
----------------------------------------------------------------------------
Wald chi2(23) = 122.92
Log likelihood = -916.70602 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
dic | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
year |
2008 | -.2730442 .2375819 -1.15 0.250 -.7386962 .1926078
|
1.newb | -.1211041 .3129108 -0.39 0.699 -.734398 .4921898
|
year#newb |
2008 1 | .3815499 .3574489 1.07 0.286 -.3190371 1.082137
|
1.sole | -.4997881 .3289285 -1.52 0.129 -1.144476 .1449
|
year#sole |
2008 1 | .2052514 .3413537 0.60 0.548 -.4637896 .8742924
|
newb#sole |
1 1 | .5648403 .4266411 1.32 0.186 -.2713609 1.401042
|
year#newb#sole |
2008 1 1 | -.9253963 .5023913 -1.84 0.065 -1.910065 .0592726
|
age | -.0220127 .030512 -0.72 0.471 -.0818152 .0377898
sex | .2641683 .1906669 1.39 0.166 -.1095319 .6378685
marry | .56805 .3670882 1.55 0.122 -.1514297 1.28753
edu_g2 | -.2518682 .1399016 -1.80 0.072 -.5260703 .022334
f_size | .0081469 .0967724 0.08 0.933 -.1815236 .1978174
home | .3902715 .3192878 1.22 0.222 -.235521 1.016064
wealth | -.0010083 .0004767 -2.12 0.034 -.0019425 -.000074
hh_incom | -.0072073 .0061165 -1.18 0.239 -.0191955 .0047809
p_pn | -.0003896 .0001501 -2.60 0.009 -.0006838 -.0000954
pr_trans | .0000963 .0001529 0.63 0.529 -.0002033 .0003959
econpart2 | -.0624379 .1811537 -0.34 0.730 -.4174925 .2926168
house | .2714114 .2234762 1.21 0.225 -.1665939 .7094168
soc_r | -.3065462 .1520254 -2.02 0.044 -.6045106 -.0085818
fam_r | -.5668335 .168877 -3.36 0.001 -.8978263 -.2358407
c_dx | .5227505 .2146773 2.44 0.015 .1019907 .9435103
inhc | .6362042 .1810271 3.51 0.000 .2813976 .9910109
_cons | 1.869337 2.312023 0.81 0.419 -2.662145 6.40082
--------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hhid: Identity |
sd(_cons) | 1.118888 .1724824 .827122 1.513574
-----------------------------+------------------------------------------------
id: Identity |
sd(_cons) | .3130409 .5917043 .0077033 12.72117
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 38.10 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
================================================== ========
And I know for mixed model, we have to do LR test to decide Random Intercept or Random Slope model.
But my academic interest is get one beta, not to see the variation in population
so I didn't do that.
However, in the bottom of the result, there is
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(2) = 38.10 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
I want to interpret this part, but I cannot find proper reference....
Can anybody give me answer.................?
Thanks in advance!
Comment