Dear All,
I am trying to do a difference in difference estimation. There is a big levels difference in the dependent variable between the treated and control unit, BUT they follow the same time trend prior to the policy change, the necessary identification assumption, the effect of which I am trying to estimate. But since I essentially have a bi-modal distribution can I interpret the regression results which Stata estimates? I believe Stata assumes a t-distribution? I am not sure how I should proceed:
1. The results can be interpreted in their current format?
2. Should I specify an alternate distribution that stata should use for regression
3. Should the control dependent variable be somehow scaled? I am specifying as aweights the number of individual's in treatment and control unit.
4. Even though in the output the test statistic is about 10 it is not statistically significant. So I think Stata is somehow using a different distribution already? Is that correct?
*OUTPUT*
* (1) total MME - bimodal
. eststo: reg MME did i.treated2 post i.week2 c.week2#c.treated2 /*jan feb mar apr may jun jul a
> ug sep oct nov*/ ///
> age026 age2640 age4055 age5565 age6575 malepat durc2 durc3 durc4 durc5 durc6 durc7 durc8 yr201
> 2 yr2013 ///
> hydrocodone oxycodone morphine hydromorphone methadone fentanyl oxymorphone buprenorphine [aweig
> ht=pats], cluster(treated2)
(sum of wgt is 1.5913e+07)
note: 100.week2 omitted because of collinearity
note: yr2012 omitted because of collinearity
note: yr2013 omitted because of collinearity
note: buprenorphine omitted because of collinearity
Linear regression Number of obs = 200
F(3, 1) = .
Prob > F = .
R-squared = 0.9854
Root MSE = 5.8e+06
(Std. Err. adjusted for 2 clusters in treated2)
Robust
MME Coef. Std. Err. t P>t [95% Conf. Interval]
did 2338347 223475.4 10.46 0.061 -501177.2 5177870
1.treated2 2.98e+08 2964874 100.63 0.006 2.61e+08 3.36e+08
post -8.44e+07 646630 -130.55 0.005 -9.26e+07 -7.62e+07
c.week2#c.treated2 -256570.4 18998.53 -13.50 0.047 -497969.6 -15171.27
age026 9.97e+08 6.08e+07 16.39 0.039 2.24e+08 1.77e+09
age2640 -2.56e+08 1.26e+07 -20.35 0.031 -4.16e+08 -9.63e+07
age4055 -6.31e+08 3.41e+07 -18.50 0.034 -1.06e+09 -1.98e+08
age5565 -6.37e+08 1.13e+07 -56.53 0.011 -7.81e+08 -4.94e+08
age6575 -1.17e+09 3.38e+07 -34.73 0.018 -1.60e+09 -7.45e+08
malepat -1.14e+09 4824606 -235.82 0.003 -1.20e+09 -1.08e+09
durc2 1.47e+08 3890101 37.86 0.017 9.78e+07 1.97e+08
durc3 1.65e+08 3724339 44.31 0.014 1.18e+08 2.12e+08
durc4 1.64e+08 1143211 143.17 0.004 1.49e+08 1.78e+08
durc5 1.80e+08 1421227 126.83 0.005 1.62e+08 1.98e+08
durc6 1.41e+08 945973 148.81 0.004 1.29e+08 1.53e+08
durc7 1.15e+08 325468.4 353.05 0.002 1.11e+08 1.19e+08
durc8 1.18e+08 100477.2 1169.53 0.001 1.16e+08 1.19e+08
yr2012 0 (omitted)
yr2013 0 (omitted)
hydrocodone 3.96e+07 4.62e+07 0.86 0.549 -5.48e+08 6.27e+08
oxycodone -1.16e+09 8539465 -135.45 0.005 -1.27e+09 -1.05e+09
morphine 1.12e+09 1.21e+08 9.29 0.068 -4.12e+08 2.65e+09
hydromorphone 1.61e+09 1.31e+08 12.25 0.052 -6.00e+07 3.28e+09
methadone 1.66e+09 8.13e+07 20.40 0.031 6.26e+08 2.69e+09
fentanyl -2.77e+09 1.09e+07 -252.84 0.003 -2.90e+09 -2.63e+09
oxymorphone 6.48e+08 7.48e+07 8.66 0.073 -3.02e+08 1.60e+09
buprenorphine 0 (omitted)
_cons 1.07e+09 1.52e+07 70.49 0.009 8.81e+08 1.27e+09
Apologies for not using an existing Stata data for this question. I couldn't find one that I could use to represent the problem in question. Many thanks in advance for any help.
Best,
Sumedha.
I am trying to do a difference in difference estimation. There is a big levels difference in the dependent variable between the treated and control unit, BUT they follow the same time trend prior to the policy change, the necessary identification assumption, the effect of which I am trying to estimate. But since I essentially have a bi-modal distribution can I interpret the regression results which Stata estimates? I believe Stata assumes a t-distribution? I am not sure how I should proceed:
1. The results can be interpreted in their current format?
2. Should I specify an alternate distribution that stata should use for regression
3. Should the control dependent variable be somehow scaled? I am specifying as aweights the number of individual's in treatment and control unit.
4. Even though in the output the test statistic is about 10 it is not statistically significant. So I think Stata is somehow using a different distribution already? Is that correct?
*OUTPUT*
* (1) total MME - bimodal
. eststo: reg MME did i.treated2 post i.week2 c.week2#c.treated2 /*jan feb mar apr may jun jul a
> ug sep oct nov*/ ///
> age026 age2640 age4055 age5565 age6575 malepat durc2 durc3 durc4 durc5 durc6 durc7 durc8 yr201
> 2 yr2013 ///
> hydrocodone oxycodone morphine hydromorphone methadone fentanyl oxymorphone buprenorphine [aweig
> ht=pats], cluster(treated2)
(sum of wgt is 1.5913e+07)
note: 100.week2 omitted because of collinearity
note: yr2012 omitted because of collinearity
note: yr2013 omitted because of collinearity
note: buprenorphine omitted because of collinearity
Linear regression Number of obs = 200
F(3, 1) = .
Prob > F = .
R-squared = 0.9854
Root MSE = 5.8e+06
(Std. Err. adjusted for 2 clusters in treated2)
Robust
MME Coef. Std. Err. t P>t [95% Conf. Interval]
did 2338347 223475.4 10.46 0.061 -501177.2 5177870
1.treated2 2.98e+08 2964874 100.63 0.006 2.61e+08 3.36e+08
post -8.44e+07 646630 -130.55 0.005 -9.26e+07 -7.62e+07
c.week2#c.treated2 -256570.4 18998.53 -13.50 0.047 -497969.6 -15171.27
age026 9.97e+08 6.08e+07 16.39 0.039 2.24e+08 1.77e+09
age2640 -2.56e+08 1.26e+07 -20.35 0.031 -4.16e+08 -9.63e+07
age4055 -6.31e+08 3.41e+07 -18.50 0.034 -1.06e+09 -1.98e+08
age5565 -6.37e+08 1.13e+07 -56.53 0.011 -7.81e+08 -4.94e+08
age6575 -1.17e+09 3.38e+07 -34.73 0.018 -1.60e+09 -7.45e+08
malepat -1.14e+09 4824606 -235.82 0.003 -1.20e+09 -1.08e+09
durc2 1.47e+08 3890101 37.86 0.017 9.78e+07 1.97e+08
durc3 1.65e+08 3724339 44.31 0.014 1.18e+08 2.12e+08
durc4 1.64e+08 1143211 143.17 0.004 1.49e+08 1.78e+08
durc5 1.80e+08 1421227 126.83 0.005 1.62e+08 1.98e+08
durc6 1.41e+08 945973 148.81 0.004 1.29e+08 1.53e+08
durc7 1.15e+08 325468.4 353.05 0.002 1.11e+08 1.19e+08
durc8 1.18e+08 100477.2 1169.53 0.001 1.16e+08 1.19e+08
yr2012 0 (omitted)
yr2013 0 (omitted)
hydrocodone 3.96e+07 4.62e+07 0.86 0.549 -5.48e+08 6.27e+08
oxycodone -1.16e+09 8539465 -135.45 0.005 -1.27e+09 -1.05e+09
morphine 1.12e+09 1.21e+08 9.29 0.068 -4.12e+08 2.65e+09
hydromorphone 1.61e+09 1.31e+08 12.25 0.052 -6.00e+07 3.28e+09
methadone 1.66e+09 8.13e+07 20.40 0.031 6.26e+08 2.69e+09
fentanyl -2.77e+09 1.09e+07 -252.84 0.003 -2.90e+09 -2.63e+09
oxymorphone 6.48e+08 7.48e+07 8.66 0.073 -3.02e+08 1.60e+09
buprenorphine 0 (omitted)
_cons 1.07e+09 1.52e+07 70.49 0.009 8.81e+08 1.27e+09
Apologies for not using an existing Stata data for this question. I couldn't find one that I could use to represent the problem in question. Many thanks in advance for any help.
Best,
Sumedha.
Comment