Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Do I need to compare the results of a standard GMM regression with those of a pooled OLS regression?

    Dear Statalist society,

    I have carried out a standard GMM regression with two instruments that I chose by assuming that they were suitable (I did not use other methods because of their complexity). I then evaluated the validity of my instruments by using a Hansen J-test for overidentifying restrictions and results show that my instruments are uncorrelated with the error terms of my equation.
    However, I was told that I need to compare the results of my OLS regression with the results of my GMM regression to show the reliance and consistency of my results.


    These are the results of the OLS regression

    HTML Code:
     reg $ylist $xlist
    
          Source |       SS       df       MS              Number of obs =     720
    -------------+------------------------------           F( 13,   706) =   86.39
           Model |    1218.138    13   93.702923           Prob > F      =  0.0000
        Residual |  765.768173   706  1.08465747           R-squared     =  0.6140
    -------------+------------------------------           Adj R-squared =  0.6069
           Total |  1983.90617   719  2.75925754           Root MSE      =  1.0415
    
    ------------------------------------------------------------------------------
           lnFDI |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        lnAPA_ex |   1.061668   .2655766     4.00   0.000     .5402537    1.583083
        lngdp_ex |   2.218972   .2239381     9.91   0.000     1.779307    2.658636
        lngdp_im |   .1755009   .0566503     3.10   0.002     .0642776    .2867241
        lnCPI_ex |   3.746099   .9763996     3.84   0.000     1.829105    5.663094
        lnCPI_im |   .1393702   .0525016     2.65   0.008     .0362922    .2424481
       lndif_GDP |  -.0319451   .0067189    -4.75   0.000    -.0451366   -.0187536
       lndif_pop |  -.0463713   .0089667    -5.17   0.000    -.0639759   -.0287668
      lnfreed_im |   4.783194   .4739892    10.09   0.000     3.852597    5.713791
          lndist |   -.338742   .0528176    -6.41   0.000    -.4424404   -.2350437
          border |  -.1600089   .2449025    -0.65   0.514    -.6408334    .3208155
            open |  -.4679075   .1699626    -2.75   0.006       -.8016   -.1342149
            polc |   4.982644   .9516921     5.24   0.000     3.114159     6.8511
           _cons |   -41.7668   3.068047   -13.61   0.000    -47.79039   -35.74321
    And these are the results of my GMM estimation

    HTML Code:
    ivregress gmm  lnFDI lngdp_ex lngdp_im lnCPI_ex lnCPI_im lndif_GDP lndif_pop lnfreed_im
    > lndist border open polc (lnAPA_ex = lnGAPA_l1 lnAPA_im)
    
    Instrumental variables (GMM) regression                Number of obs =     720
                                                           Wald chi2(13) = 1529.99
                                                           Prob > chi2   =  0.0000
                                                           R-squared     =  0.5716
    GMM weight matrix: Robust                              Root MSE      =  1.0865
    
    ------------------------------------------------------------------------------
                 |               Robust
           lnFDI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        lnAPA_ex |   3.393222   .6411406     5.29   0.000      2.13661    4.649835
        lngdp_ex |   1.776358   .2145395     8.28   0.000     1.355868    2.196847
        lngdp_im |   .1900265   .0604584     3.14   0.002     .0715302    .3085228
        lnCPI_ex |   11.52501   2.196498     5.25   0.000     7.219956    15.83007
        lnCPI_im |   .2067215   .0682706     3.03   0.002     .0729135    .3405295
       lndif_GDP |  -.0338982   .0072998    -4.64   0.000    -.0482056   -.0195909
       lndif_pop |   -.044247   .0089408    -4.95   0.000    -.0617707   -.0267233
      lnfreed_im |   4.827352   .4997397     9.66   0.000      3.84788    5.806824
          lndist |  -.3231212   .0494157    -6.54   0.000    -.4199742   -.2262681
          border |  -.0571234    .137437    -0.42   0.678     -.326495    .2122481
            open |  -.6323952   .2426697    -2.61   0.009    -1.108019   -.1567714
            polc |   3.084821   1.022805     3.02   0.003     1.080161    5.089482
           _cons |  -48.58023   4.029627   -12.06   0.000    -56.47815    -40.6823
    ------------------------------------------------------------------------------
    Instrumented:  lnAPA_ex
    Instruments:   lngdp_ex lngdp_im lnCPI_ex lnCPI_im lndif_GDP  lndif_pop
                   lnfreed_im lndist border open polc lnGAPA_l1 lnAPA_im
                   
    I haven't found much information about this comparison on Google. So, I unfortunately don't know what to compare between the OLS and GMM and what the differences would imply.
    I am eagerly requesting the help of an expert in this forum. Thank you very much in advance.

  • #2
    No one responded quickly to your question. You'll increase your chances of a helpful answer if you follow the FAQ on asking questions - provide Stata code in code delimiters, Stata output, and sample data. Also, try to simplify your code to what is necessary to demonstrate the problem.

    Look at hausman in the documentation. A difference between GMM (or any model that controls for endogeneity) and a model that doesn't is testing whether the constraints added in the OLS (essentially constraints on the parameters of the instrumental variable model) are appropriate.

    Comment

    Working...
    X