Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help interpreting etregress results

    Good day, everyone! I am a beginner at Stata and I am conducting my undergraduate thesis. I came across the etregress command in one of my reference material.

    I would just like to ask how to interpret the results. All I have been able to gather is that if /athrho is insignificant, we fail to reject the null hypothesis that there is no endogeniety, and even then I am not sure if that is correct.

    I also read in this forum something about lambda and the Mills ratio. I would also like to ask how to interpret lambda and how to apply it in the discussion of my results.

    Lastly, I would also like to know how to interpret the last line of the output in Stata:
    Wald test of indep. eqns. (rho = 0): chi2(1) = 0.44 Prob > chi2 = 0.5082

    I am sorry for asking such beginner questions. I hope you can guide me to better understanding. Thank you for your patience.

    Code:
    . etregress lnmpcccons i.gender age agesq ib1.education ib1.occupation i.spousework hhsize i.urbanrural i.agrihh ib0.region, treat( savings= i.gender ib1.education ib1.occupation
    >  i.urbanrural ib0.majorregion)
    
    Iteration 0:   log likelihood = -47519.925  
    Iteration 1:   log likelihood = -47516.814  
    Iteration 2:   log likelihood = -47516.674  
    Iteration 3:   log likelihood = -47516.674  
    
    Linear regression with endogenous treatment       Number of obs   =      40171
    Estimator: maximum likelihood                     Wald chi2(35)   =   64028.51
    Log likelihood = -47516.674                       Prob > chi2     =     0.0000
    
    ------------------------------------------------------------------------------
                 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    lnmpcccons   |
          gender |
         Female  |   .0200998   .0069047     2.91   0.004      .006567    .0336327
             age |   .0221425   .0011321    19.56   0.000     .0199236    .0243614
           agesq |  -.0001795   .0000108   -16.62   0.000    -.0002007   -.0001584
                 |
       education |
         lessHS  |  -.2481496   .0070105   -35.40   0.000      -.26189   -.2344092
         postHS  |   .1825727    .015147    12.05   0.000     .1528852    .2122603
       undrColl  |   .1883856    .010537    17.88   0.000     .1677334    .2090378
       gradColl  |   .5408572   .0124758    43.35   0.000      .516405    .5653094
                 |
      occupation |
           None  |  -.0942983   .0089295   -10.56   0.000    -.1117997   -.0767969
           Srvc  |  -.1813907    .012531   -14.48   0.000    -.2059511   -.1568303
            FFF  |   -.231482   .0097222   -23.81   0.000    -.2505371   -.2124268
          Trade  |  -.2085894   .0113729   -18.34   0.000    -.2308798   -.1862991
          Machn  |  -.1758853   .0128373   -13.70   0.000     -.201046   -.1507246
      Unskilled  |  -.2556389   .0095443   -26.78   0.000    -.2743454   -.2369324
        Special  |  -.2060041   .0443966    -4.64   0.000    -.2930198   -.1189885
                 |
      spousework |
       Employed  |   .0603052   .0054892    10.99   0.000     .0495465    .0710639
          hhsize |  -.1173599   .0011544  -101.66   0.000    -.1196224   -.1150973
                 |
      urbanrural |
          Rural  |  -.2207572   .0067701   -32.61   0.000    -.2340263   -.2074881
                 |
          agrihh |
           Agri  |  -.2653004   .0074923   -35.41   0.000     -.279985   -.2506158
                 |
          region |
            CAR  |  -.3130079   .0153421   -20.40   0.000    -.3430778    -.282938
        RegionI  |  -.2882502   .0144554   -19.94   0.000    -.3165823   -.2599181
       RegionII  |  -.2827657   .0150802   -18.75   0.000    -.3123224    -.253209
      RegionIII  |  -.0449132   .0126781    -3.54   0.000    -.0697618   -.0200645
      RegionIVA  |  -.1205495   .0117696   -10.24   0.000    -.1436174   -.0974815
      RegionIVB  |  -.4996433   .0160114   -31.21   0.000    -.5310251   -.4682616
        RegionV  |  -.4008348   .0144166   -27.80   0.000    -.4290909   -.3725787
       RegionVI  |  -.3842323   .0139014   -27.64   0.000    -.4114786    -.356986
      RegionVII  |  -.4257214   .0141991   -29.98   0.000    -.4535511   -.3978917
     RegionVIII  |  -.5009164   .0152565   -32.83   0.000    -.5308185   -.4710143
       RegionIX  |  -.6382387   .0158506   -40.27   0.000    -.6693054   -.6071721
        RegionX  |   -.571888   .0156281   -36.59   0.000    -.6025185   -.5412576
       RegionXI  |  -.3430152   .0145741   -23.54   0.000    -.3715798   -.3144505
      RegionXII  |   -.467563   .0150714   -31.02   0.000    -.4971025   -.4380235
           ARMM  |  -.2962025   .0162721   -18.20   0.000    -.3280953   -.2643097
         CARAGA  |  -.4357856   .0161733   -26.94   0.000    -.4674846   -.4040866
                 |
         savings |   .3587962   .0324674    11.05   0.000     .2951613    .4224312
           _cons |   8.287544   .0331734   249.83   0.000     8.222525    8.352563
    -------------+----------------------------------------------------------------
    savings      |
          gender |
         Female  |   -.042895   .0191203    -2.24   0.025      -.08037     -.00542
                 |
       education |
         lessHS  |  -.2711064   .0191815   -14.13   0.000    -.3087015   -.2335113
         postHS  |   .3252731   .0384256     8.47   0.000     .2499604    .4005859
       undrColl  |   .1818193   .0278539     6.53   0.000     .1272267     .236412
       gradColl  |   .6602118   .0253974    26.00   0.000     .6104338    .7099899
                 |
      occupation |
           None  |   -.151249   .0227643    -6.64   0.000    -.1958662   -.1066318
           Srvc  |  -.0633397   .0338512    -1.87   0.061    -.1296868    .0030075
            FFF  |  -.3788235   .0252428   -15.01   0.000    -.4282984   -.3293486
          Trade  |  -.2375267   .0315493    -7.53   0.000    -.2993621   -.1756913
          Machn  |  -.0886138   .0348941    -2.54   0.011     -.157005   -.0202226
      Unskilled  |  -.4453145   .0255374   -17.44   0.000    -.4953669   -.3952621
        Special  |   .1595485   .1181011     1.35   0.177    -.0719254    .3910224
                 |
      urbanrural |
          Rural  |  -.2537893   .0176925   -14.34   0.000     -.288466   -.2191126
                 |
     majorregion |
      Bal Luzon  |   -.197786   .0253054    -7.82   0.000    -.2473836   -.1481884
        Visayas  |  -.4764414   .0295201   -16.14   0.000    -.5342998    -.418583
       Mindanao  |   -.518607   .0268327   -19.33   0.000    -.5711982   -.4660158
                 |
           _cons |  -.1183562   .0271676    -4.36   0.000    -.1716038   -.0651087
    -------------+----------------------------------------------------------------
         /athrho |   .0241147   .0364425     0.66   0.508    -.0473112    .0955407
        /lnsigma |  -.6917304   .0035504  -194.83   0.000     -.698689   -.6847718
    -------------+----------------------------------------------------------------
             rho |   .0241101   .0364213                     -.0472759     .095251
           sigma |   .5007089   .0017777                      .4972368    .5042053
          lambda |   .0120721   .0182413                     -.0236802    .0478244
    ------------------------------------------------------------------------------
    Wald test of indep. eqns. (rho = 0): chi2(1) =     0.44   Prob > chi2 = 0.5082

  • #2
    No one responded quickly to your question. You'll increase your chances of a helpful answer if you follow the FAQ on asking questions - provide Stata code in code delimiters, Stata output, and sample data. Most of the folks on this list do not open files. Also, try to simplify your code to what is necessary to demonstrate the problem. Surely, all these variables are not essential to the problem.

    You need to re-read the documentation - it covers many of these issues (although understanding it may take some effort).

    The Wald test suggests you don't need etregress but rather can go with one of the estimators that assumes selection on the observables - a very nice thing.

    Comment

    Working...
    X