Hello Everyone,
I'm new here and possibly this question has been overly addressed but i can't seem to relate all that I've read previously, to my peculiar issue.
I am using Stata 14.
I have panel data for 84 countries over 10 time periods.The Hausman test points to a fixed effects model.
I want my estimates to include fixed time effects but I get different results when I try two approaches I've read on which I'll paste below.
My question basically is that which of these two is most appropriate?
The results above are closer to my expectation but I'm just not sure if it's right.
The other approach I tried involves the use of time dummies:
Please help me clear this confusion I have.
Thank you!
PS: My summary statistics:
I'm new here and possibly this question has been overly addressed but i can't seem to relate all that I've read previously, to my peculiar issue.
I am using Stata 14.
I have panel data for 84 countries over 10 time periods.The Hausman test points to a fixed effects model.
I want my estimates to include fixed time effects but I get different results when I try two approaches I've read on which I'll paste below.
My question basically is that which of these two is most appropriate?
Code:
xtreg eg ini_lny ln_edu ini_m3 ini_gov ini_trd, fe vce(robust)
Code:
Fixed-effects (within) regression Number of obs = 732 Group variable: id Number of groups = 83 R-sq: Obs per group: within = 0.1192 min = 1 between = 0.0621 avg = 8.8 overall = 0.0021 max = 10 F(5,82) = 14.28 corr(u_i, Xb) = -0.9509 Prob > F = 0.0000 (Std. Err. adjusted for 83 clusters in id) ------------------------------------------------------------------------------ | Robust eg | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ini_lny | -.0289996 .004875 -5.95 0.000 -.0386976 -.0193016 ln_edu | .0022868 .0028824 0.79 0.430 -.0034472 .0080208 ini_m3 | -.000018 .0000606 -0.30 0.767 -.0001386 .0001026 ini_gov | -.0012903 .0004423 -2.92 0.005 -.0021702 -.0004104 ini_trd | .0003053 .0000844 3.62 0.001 .0001374 .0004733 _cons | .2543406 .0341692 7.44 0.000 .1863671 .3223141 -------------+---------------------------------------------------------------- sigma_u | .04990593 sigma_e | .02462206 rho | .80423781 (fraction of variance due to u_i) ------------------------------------------------------------------------------
The other approach I tried involves the use of time dummies:
Code:
xtreg eg ini_lny ln_edu ini_m3 ini_gov ini_trd i.t, fe vce(robust)
Code:
Fixed-effects (within) regression Number of obs = 732 Group variable: id Number of groups = 83 R-sq: Obs per group: within = 0.2182 min = 1 between = 0.0858 avg = 8.8 overall = 0.0017 max = 10 F(14,82) = 8.84 corr(u_i, Xb) = -0.9626 Prob > F = 0.0000 (Std. Err. adjusted for 83 clusters in id) ------------------------------------------------------------------------------ | Robust eg | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- ini_lny | -.0354297 .0050206 -7.06 0.000 -.0454173 -.0254422 ln_edu | -.0037857 .0041587 -0.91 0.365 -.0120588 .0044874 ini_m3 | -.0001256 .0000593 -2.12 0.037 -.0002437 -7.58e-06 ini_gov | -.000932 .0004604 -2.02 0.046 -.0018478 -.0000162 ini_trd | .0002988 .0000735 4.07 0.000 .0001526 .000445 | t | 2 | .0053626 .003445 1.56 0.123 -.0014906 .0122158 3 | .0062674 .0047017 1.33 0.186 -.0030857 .0156205 4 | -.0140571 .0050782 -2.77 0.007 -.0241592 -.003955 5 | .0035626 .0051512 0.69 0.491 -.0066848 .0138099 6 | .0017912 .0065521 0.27 0.785 -.0112431 .0148255 7 | .0126059 .0064515 1.95 0.054 -.0002283 .0254401 8 | .012388 .0067282 1.84 0.069 -.0009966 .0257726 9 | .016891 .0073564 2.30 0.024 .0022568 .0315253 10 | .023365 .0088834 2.63 0.010 .0056932 .0410369 | _cons | .3191557 .0406118 7.86 0.000 .2383659 .3999455 -------------+---------------------------------------------------------------- sigma_u | .06376517 sigma_e | .02336045 rho | .88166841 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Please help me clear this confusion I have.
Thank you!
PS: My summary statistics:
Code:
Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- id | 840 42.5 24.26144 1 84 t | 840 5.5 2.873993 1 10 eg | 814 .0175811 .0283199 -.13996 .112986 ini_lny | 804 8.341237 1.531912 5.588527 11.54508 ln_edu | 840 2.88243 .9875779 -1.714798 4.460491 -------------+--------------------------------------------------------- ini_gov | 787 14.55505 5.001012 3.135428 34.16856 avr_gov | 783 14.75332 4.956445 4.080355 34.06281 ini_trd | 785 62.31837 32.96886 7.529721 192.1141 avr_trd | 779 61.74042 31.21065 8.422645 182.4387 ini_m3 | 814 46.84731 38.35419 4.461628 339.1169 -------------+--------------------------------------------------------- avr_m3 | 827 48.7062 39.56732 6.500692 370.4257 ini_bm | 672 .3993627 .2423745 .0407223 1.312352 avr_bm | 667 .4269048 .2641024 .0476598 1.42723 ini_pcred | 813 39.85124 36.84571 .4 194.88 avr_pcred | 824 41.69704 37.99656 .7563173 222.2638 -------------+---------------------------------------------------------
Comment