Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • marginsplot error: "variable _pw0 not found" and "_term not labeled"

    Dear All, I tried to use marginsplot after the following regression and got error messages I do not understand.
    Code:
    probit y i.v##i.x1 i.x2 x3 i.t, cl(id)
    margins v, dydx(x1) pwcompare(pveffects) mcompare(bonferroni)
    marginsplot
    The above gives the following error message: variable _pw0 not found. Issuing the command
    Code:
    marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
    after
    Code:
    margins v, dydx(x1) pwcompare(pveffects) mcompare(bonferroni)
    gives: _term not labeled.

    I wonder why? Can anyone help please?

    Here is the data:
    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input float(id v t y x1 x2 x3)
    20010 1 1 1 0 1 40
    20010 1 2 0 0 1 75
    20010 1 3 0 0 1 52
    20012 1 2 0 0 1 51
    20012 1 3 0 1 1 48
    20022 1 2 0 0 1 60
    20022 1 3 0 0 0 64
    20030 1 1 1 0 1 30
    20030 1 2 1 0 1 45
    20030 1 3 1 0 1 48
    20042 1 2 0 0 1 65
    20042 1 3 1 0 1 70
    20052 1 2 1 0 1 35
    20052 1 3 1 0 1 45
    20060 1 1 1 0 1 45
    20060 1 2 1 0 1 50
    20060 1 3 1 0 1 69
    20062 1 2 0 0 1 61
    20062 1 3 1 0 1 67
    20070 1 1 0 0 1 49
    20070 1 2 1 0 1 62
    20070 1 3 0 1 1 53
    20072 1 2 0 0 0 29
    20072 1 3 0 0 1 31
    20080 1 1 0 0 1 36
    20080 1 2 1 0 1 28
    20080 1 3 0 0 1 40
    20082 1 2 1 0 1 40
    20082 1 3 1 0 1 48
    20092 1 2 0 0 1 29
    20092 1 3 0 0 1 58
    20102 1 2 1 0 1 47
    20102 1 3 1 0 1 50
    20110 1 1 1 1 1 35
    20110 1 2 0 0 1 37
    20122 1 2 1 0 1 63
    20122 1 3 1 1 1 65
    20130 1 1 0 1 0 32
    20130 1 2 1 1 1 60
    20130 1 3 1 1 1 70
    20132 1 2 0 0 1 33
    20132 1 3 1 0 1 45
    20140 1 1 0 0 0 32
    20140 1 2 0 0 1 40
    20140 1 3 0 0 0 48
    20142 1 2 1 0 0 35
    20142 1 3 0 0 1 40
    20150 1 1 1 1 1 27
    20150 1 2 1 1 1 32
    20150 1 3 0 0 1 30
    20152 1 2 0 0 1 78
    20152 1 3 0 0 1 51
    20160 1 1 0 0 1 45
    20160 1 2 1 0 1 55
    20160 1 3 0 0 1 48
    20162 1 2 1 0 1 46
    20162 1 3 1 0 1 51
    20170 1 1 1 0 1 49
    20170 1 2 0 0 1 47
    20170 1 3 0 0 1 58
    20172 1 2 1 1 1 62
    20172 1 3 1 1 1 67
    20180 1 1 1 0 1 40
    20180 1 2 0 0 0 65
    20180 1 3 0 0 1 43
    20182 1 2 1 0 1 45
    20182 1 3 1 0 1 65
    20192 1 2 1 0 1 37
    20192 1 3 0 0 1 41
    20200 1 1 0 0 1 25
    20200 1 2 0 1 1 31
    20200 1 3 0 0 1 36
    20202 1 2 1 0 1 26
    20202 1 3 1 0 1 32
    20210 1 1 1 0 0 53
    20210 1 2 0 0 0 61
    20210 1 3 1 1 1 35
    20212 1 2 0 0 0 45
    20212 1 3 0 0 1 52
    20220 1 1 0 0 1 25
    20220 1 2 1 0 1 25
    20220 1 3 0 0 1 40
    20222 1 2 1 0 1 45
    20222 1 3 0 0 1 40
    20230 1 1 1 0 0 72
    20230 1 2 0 0 0 77
    20230 1 3 1 0 1 45
    20232 1 2 1 0 1 45
    20232 1 3 0 0 1 47
    20240 1 1 0 0 0 75
    20240 1 2 1 0 0 40
    20250 1 1 0 0 0 38
    20250 1 2 1 0 1 45
    20250 1 3 0 0 1 29
    20260 1 1 1 0 0 45
    20260 1 2 1 1 1 59
    20260 1 3 0 0 1 48
    20262 1 2 1 0 1 35
    20262 1 3 0 0 1 39
    20270 1 1 0 0 0 51
    end
    label values t year
    label def year 1 "Afrint1", modify
    label def year 2 "Afrint2", modify
    label def year 3 "Afrint3", modify
    label values x1 nfwe
    label def nfwe 0 "no", modify
    label def nfwe 1 "yes", modify
    label values x2 fertd
    label def fertd 0 "no", modify
    label def fertd 1 "yes", modify
    Fred

  • #2
    I cannot reproduce the error messages that you mentioned. Instead, I get this:
    Code:
    . margins v, dydx(x1) pwcompare(pveffects) mcompare(bonferroni)
    invalid pairwise comparison;
    term with only one level not allowed
    r(322);

    Comment


    • #3
      Really? First, i think the data was truncated. The full data is below but I get the same error:
      Code:
      probit y i.v##i.x1 i.x2 x3 i.t, cl(id)
      margins v, dydx(x1) pwcompare(pveffects) mcompare(bonferroni)
      marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
      
      _term not labeled
      This is how I went around it, not sure if this is correct but I guess so:

      Code:
      probit y i.v##c.x1 i.x2 x3 i.t, cl(id)
      margins v, dydx(x1) at(x1=(1)) pwcompare(pveffects) mcompare(bonferroni)
      marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
      Here is the data:
      Code:
      * Example generated by -dataex-. To install: ssc install dataex
      clear
      input float(id t y v x1 x2 x3)
      20010 1 1 1 0 0 40
      20010 2 0 1 0 0 75
      20010 3 0 1 0 0 52
      20012 2 0 1 0 0 51
      20012 3 0 1 1 0 48
      20022 2 0 1 0 0 60
      20022 3 0 1 0 0 64
      20030 1 1 1 0 0 30
      20030 2 1 1 0 0 45
      20030 3 1 1 0 1 48
      20042 2 0 1 0 0 65
      20042 3 1 1 0 0 70
      20052 2 1 1 0 1 35
      20052 3 1 1 0 1 45
      20060 1 1 1 0 0 45
      20060 2 1 1 0 0 50
      20060 3 1 1 0 0 69
      20062 2 0 1 0 0 61
      20062 3 1 1 0 0 67
      20070 1 0 1 0 0 49
      20070 2 1 1 0 1 62
      20070 3 0 1 1 1 53
      20072 2 0 1 0 0 29
      20072 3 0 1 0 0 31
      20080 1 0 1 0 0 36
      20080 2 1 1 0 0 28
      20080 3 0 1 0 0 40
      20082 2 1 1 0 0 40
      20082 3 1 1 0 0 48
      20092 2 0 1 0 1 29
      20092 3 0 1 0 1 58
      20102 2 1 1 0 0 47
      20102 3 1 1 0 0 50
      20110 1 1 1 1 0 35
      20110 2 0 1 0 0 37
      20122 2 1 1 0 0 63
      20122 3 1 1 1 0 65
      20130 1 0 1 1 0 32
      20130 2 1 1 1 1 60
      20130 3 1 1 1 0 70
      20132 2 0 1 0 0 33
      20132 3 1 1 0 0 45
      20140 1 0 1 0 0 32
      20140 2 0 1 0 0 40
      20140 3 0 1 0 0 48
      20142 2 1 1 0 0 35
      20142 3 0 1 0 0 40
      20150 1 1 1 1 0 27
      20150 2 1 1 1 1 32
      20150 3 0 1 0 1 30
      20152 2 0 1 0 0 78
      20152 3 0 1 0 1 51
      20160 1 0 1 0 0 45
      20160 2 1 1 0 0 55
      20160 3 0 1 0 0 48
      20162 2 1 1 0 0 46
      20162 3 1 1 0 0 51
      20170 1 1 1 0 1 49
      20170 2 0 1 0 1 47
      20170 3 0 1 0 1 58
      20172 2 1 1 1 1 62
      20172 3 1 1 1 0 67
      20180 1 1 1 0 0 40
      20180 2 0 1 0 0 65
      20180 3 0 1 0 0 43
      20182 2 1 1 0 0 45
      20182 3 1 1 0 0 65
      20192 2 1 1 0 0 37
      20192 3 0 1 0 0 41
      20200 1 0 1 0 0 25
      20200 2 0 1 1 0 31
      20200 3 0 1 0 0 36
      20202 2 1 1 0 0 26
      20202 3 1 1 0 0 32
      20210 1 1 1 0 0 53
      20210 2 0 1 0 0 61
      20210 3 1 1 1 0 35
      20212 2 0 1 0 0 45
      20212 3 0 1 0 0 52
      20220 1 0 1 0 0 25
      20220 2 1 1 0 0 25
      20220 3 0 1 0 0 40
      20222 2 1 1 0 1 45
      20222 3 0 1 0 0 40
      20230 1 1 1 0 1 72
      20230 2 0 1 0 1 77
      20230 3 1 1 0 0 45
      20232 2 1 1 0 0 45
      20232 3 0 1 0 0 47
      20240 1 0 1 0 0 75
      20240 2 1 1 0 0 40
      20250 1 0 1 0 0 38
      20250 2 1 1 0 1 45
      20250 3 0 1 0 0 29
      20260 1 1 1 0 0 45
      20260 2 1 1 1 0 59
      20260 3 0 1 0 0 48
      20262 2 1 1 0 0 35
      20262 3 0 1 0 0 39
      20270 1 0 1 0 1 51
      20270 2 0 1 0 0 62
      20270 3 0 1 0 1 61
      20272 2 0 1 0 0 42
      20272 3 1 1 0 0 55
      20280 1 1 1 0 0 77
      20280 2 0 1 0 0 83
      20280 3 0 1 0 0 58
      20282 2 1 1 1 0 45
      20282 3 0 1 0 0 45
      20292 2 0 1 0 0 44
      20292 3 1 1 0 0 49
      20302 2 1 1 0 0 76
      20302 3 0 1 1 0 40
      20310 1 0 1 0 1 43
      20310 2 0 1 0 1 45
      20320 1 1 1 1 1 60
      20320 2 1 1 0 1 59
      20320 3 1 1 0 1 50
      20322 2 0 2 0 1 52
      20322 3 0 2 0 1 55
      20330 1 1 1 0 0 53
      20330 2 1 1 0 0 47
      20330 3 0 1 0 0 64
      20332 2 1 2 0 1 48
      20332 3 1 2 0 0 68
      20340 1 1 1 0 0 63
      20340 2 1 1 0 0 68
      20340 3 0 1 0 0 40
      20342 2 1 2 1 0 57
      20342 3 0 2 0 0 61
      20350 1 0 1 0 0 40
      20350 2 1 1 0 0 49
      20350 3 0 1 1 0 55
      20352 2 1 2 0 0 35
      20352 3 0 2 0 0 33
      20362 2 1 2 0 0 41
      20362 3 0 2 0 0 45
      20372 2 1 2 0 1 74
      20372 3 0 2 0 1 76
      20380 1 1 1 0 1 70
      20380 2 0 1 0 1 75
      20380 3 0 1 0 1 70
      20382 2 0 2 1 0 44
      20382 3 0 2 0 0 53
      20390 1 0 1 0 0 26
      20390 2 0 1 0 0 27
      20390 3 0 1 1 0 35
      20392 2 0 2 1 0 76
      20392 3 0 2 0 0 80
      20400 1 1 1 0 0 38
      20400 2 1 1 0 0 40
      20400 3 1 1 0 0 50
      20402 2 0 2 0 0 40
      20402 3 1 2 0 1 48
      20410 1 1 1 0 0 30
      20410 2 1 1 0 0 42
      20410 3 1 1 0 0 48
      20412 2 1 2 0 0 50
      20412 3 0 2 0 0 56
      20422 2 1 2 0 0 62
      20422 3 0 2 0 0 70
      20430 1 0 1 0 0 50
      20430 2 0 1 0 0 75
      20430 3 0 1 0 0 58
      20432 2 0 2 1 0 49
      20432 3 1 2 1 0 55
      20442 2 1 2 0 0 69
      20442 3 0 2 1 0 80
      20450 1 0 1 0 0 31
      20450 2 1 1 0 0 38
      20450 3 1 1 0 0 52
      20452 2 1 2 0 0 45
      20452 3 0 2 0 1 50
      20460 1 0 2 0 1 35
      20460 2 1 2 0 0 46
      20460 3 1 2 1 0 41
      20462 2 1 2 0 0 50
      20462 3 0 2 1 0 45
      20470 1 0 2 0 1 45
      20470 2 1 2 0 0 65
      20472 2 0 2 0 1 36
      20472 3 0 2 0 0 62
      20480 1 1 2 0 0 54
      20480 2 1 2 0 1 45
      20480 3 0 2 0 0 52
      20482 2 0 2 0 0 41
      20482 3 1 2 0 0 45
      20490 1 1 2 1 0 38
      20490 2 1 2 1 0 44
      20490 3 1 2 1 0 49
      20500 1 1 2 1 0 60
      20500 2 1 2 1 0 67
      20500 3 1 2 1 0 41
      20510 1 1 2 0 0 35
      20510 2 1 2 0 0 52
      20510 3 0 2 0 0 61
      20512 2 0 2 0 0 47
      20512 3 0 2 0 0 50
      20520 1 0 2 1 0 60
      20520 2 1 2 0 1 50
      20522 2 0 2 0 0 71
      20522 3 0 2 0 1 79
      20532 2 0 2 0 0 73
      20532 3 0 2 0 0 78
      20540 1 0 2 0 1 35
      20540 2 1 2 0 0 37
      20540 3 1 2 1 0 44
      20542 2 1 2 0 0 74
      20542 3 1 2 0 1 48
      20550 1 0 2 1 0 40
      20550 2 0 2 0 0 37
      20550 3 0 2 1 0 53
      20560 1 1 2 1 1 42
      20560 2 1 2 0 0 56
      20560 3 0 2 0 1 57
      20570 1 0 2 0 1 44
      20570 2 1 2 0 1 44
      20572 2 0 2 0 0 46
      20572 3 0 2 0 0 42
      20582 2 1 2 0 0 27
      20582 3 1 2 0 0 27
      20592 2 1 2 0 0 68
      20592 3 1 2 0 0 72
      20600 1 0 2 0 1 65
      20600 2 1 2 0 0 46
      20600 3 1 2 0 0 54
      20602 2 0 3 0 1 49
      20602 3 0 3 0 1 54
      20610 1 0 2 0 1 49
      20610 2 1 2 0 1 56
      20610 3 0 2 0 1 66
      20612 2 0 3 0 0 47
      20612 3 1 3 0 1 52
      20620 1 0 2 0 1 63
      20620 2 1 2 0 1 45
      20622 2 0 3 0 0 65
      20622 3 1 3 0 0 28
      20630 1 0 2 0 1 69
      20630 2 0 2 0 0 28
      20630 3 0 2 0 0 35
      20632 2 0 3 0 1 52
      20632 3 1 3 0 0 30
      20642 2 1 3 0 0 27
      20642 3 1 3 1 0 68
      20652 2 1 3 0 1 44
      20652 3 1 3 0 1 46
      20660 1 1 2 0 0 47
      20660 2 1 2 1 0 52
      20662 2 1 3 0 0 36
      20662 3 1 3 0 0 39
      20670 1 0 2 0 0 26
      20670 2 1 2 0 0 60
      20670 3 0 2 0 1 56
      20680 1 1 2 0 0 29
      20680 2 0 2 0 0 29
      20680 3 1 2 0 0 43
      20682 2 1 3 0 1 36
      20682 3 1 3 0 1 43
      20690 1 0 2 0 0 50
      20690 2 0 2 1 0 35
      20692 2 1 3 0 0 65
      20692 3 1 3 1 1 38
      20700 1 0 2 0 0 27
      20700 2 0 2 0 0 26
      20700 3 1 2 1 0 58
      20710 1 0 2 0 0 50
      20710 2 1 2 0 0 40
      20710 3 0 2 0 0 32
      20712 2 1 3 0 1 27
      20712 3 1 3 0 0 46
      20720 1 0 2 0 0 62
      20720 2 1 2 0 0 73
      20720 3 0 2 0 0 75
      20722 2 1 3 0 1 40
      20722 3 0 3 0 0 62
      20730 1 0 2 0 0 62
      20730 2 1 2 0 0 75
      20730 3 0 2 0 0 29
      20732 2 1 3 0 0 34
      20732 3 1 3 1 0 39
      20740 1 0 2 0 0 45
      20740 2 0 2 0 0 50
      20740 3 0 2 0 0 56
      20750 1 0 2 0 0 50
      20750 2 1 2 0 0 54
      20750 3 1 2 0 0 57
      20752 2 1 3 1 0 42
      20752 3 0 3 0 0 55
      20762 2 1 3 0 0 36
      20762 3 1 3 0 0 45
      20770 1 1 2 0 0 67
      20770 2 0 2 1 0 73
      20770 3 0 2 0 1 67
      20780 1 0 2 0 1 45
      20780 2 0 2 0 1 70
      20782 2 0 3 0 0 72
      20782 3 1 3 0 0 74
      20790 1 0 2 0 1 58
      20790 2 1 2 0 1 70
      20790 3 1 2 1 0 70
      20792 2 1 3 0 0 29
      20792 3 0 3 0 0 33
      20800 1 1 2 0 0 65
      20800 2 0 2 0 0 72
      20800 3 0 2 0 0 69
      20802 2 1 3 0 1 23
      20802 3 1 3 1 0 58
      20810 1 0 2 0 1 23
      20810 2 1 2 0 1 32
      20810 3 0 2 0 1 34
      20812 2 0 3 0 0 27
      20812 3 0 3 0 0 33
      20820 1 1 2 0 0 44
      20820 2 1 2 0 1 43
      20820 3 1 2 0 1 50
      20830 1 0 2 0 0 71
      20830 2 1 2 0 0 71
      20830 3 0 2 0 0 55
      20840 1 0 2 0 1 52
      20840 2 0 2 0 1 60
      20840 3 0 2 0 1 68
      20850 1 1 2 0 0 63
      20850 2 1 2 0 0 70
      20850 3 0 2 1 0 75
      20860 1 0 2 1 0 60
      20860 2 1 2 0 1 54
      20860 3 0 2 0 1 59
      20870 1 1 2 0 0 30
      20870 2 0 2 0 0 32
      20880 1 0 2 0 0 45
      20880 2 0 2 0 0 45
      20890 1 1 2 0 1 42
      20890 2 1 2 0 1 50
      20890 3 1 2 0 1 51
      20900 1 0 2 0 0 35
      20900 2 1 2 0 0 35
      20900 3 1 2 1 0 36
      20910 1 1 2 0 0 42
      20910 2 0 2 0 0 46
      20910 3 0 2 0 0 52
      20920 1 0 2 0 0 57
      20920 2 1 2 1 0 33
      20930 1 1 2 0 0 50
      20930 2 1 2 0 0 50
      20930 3 1 2 0 1 56
      20940 1 0 2 0 1 60
      20940 2 1 2 0 0 65
      20940 3 1 2 0 1 60
      20950 1 0 2 1 0 38
      20950 2 1 2 0 0 37
      20960 1 1 3 1 0 74
      20960 2 1 3 0 0 45
      20960 3 1 3 0 1 30
      20970 1 0 3 0 0 60
      20970 2 0 3 0 0 30
      20970 3 0 3 0 1 23
      20980 1 0 3 0 1 46
      20980 2 0 3 0 1 57
      20980 3 1 3 0 0 66
      21000 1 1 3 0 0 46
      21000 2 1 3 0 0 51
      21010 1 0 3 0 1 32
      21010 2 0 3 0 0 43
      21010 3 1 3 1 1 40
      21020 1 1 3 0 0 55
      21020 2 0 3 0 0 34
      21020 3 1 3 0 0 39
      21030 1 1 3 0 0 25
      21030 2 1 3 0 0 32
      21030 3 0 3 0 1 29
      21040 1 0 3 0 0 54
      21040 2 1 3 0 0 55
      21040 3 1 3 0 0 50
      21050 1 1 3 0 0 50
      21050 2 1 3 0 0 60
      21060 1 0 3 0 1 48
      21060 2 1 3 0 0 56
      21080 1 0 3 0 0 42
      21080 2 1 3 0 0 48
      21080 3 1 3 0 0 55
      21090 1 0 3 0 0 35
      21090 2 1 3 0 0 38
      21090 3 1 3 0 0 35
      21100 1 0 3 0 1 45
      21100 2 1 3 0 1 52
      21100 3 1 3 1 0 61
      21120 1 0 3 0 0 75
      21120 2 1 3 0 0 75
      21130 1 0 3 0 0 23
      21130 2 1 3 0 0 23
      21130 3 1 3 0 0 34
      21140 1 1 3 0 0 28
      21140 2 1 3 1 0 33
      21150 1 1 3 0 0 35
      21150 2 1 3 0 0 40
      21150 3 1 3 0 0 45
      21160 1 0 3 0 0 56
      21160 2 1 3 0 0 59
      21160 3 1 3 1 0 64
      21170 1 0 3 0 0 47
      21170 2 1 3 0 0 54
      21180 1 1 3 0 0 28
      21180 2 1 3 1 0 33
      21180 3 1 3 0 0 39
      21190 1 0 3 0 0 57
      21190 2 1 3 0 0 62
      21200 1 0 3 0 0 64
      21200 2 1 3 0 0 43
      21200 3 1 3 0 0 47
      21210 1 0 3 0 0 40
      21210 2 0 3 0 0 45
      21210 3 0 3 0 0 40
      21220 1 1 3 0 0 29
      21220 2 0 3 0 0 45
      21240 1 1 3 0 1 38
      21240 2 1 3 0 0 46
      21250 1 0 3 0 0 28
      21250 2 1 3 0 0 33
      21260 1 1 3 0 0 46
      21260 2 1 3 0 0 52
      21270 1 0 3 0 0 63
      21270 2 1 3 0 0 70
      21280 1 1 3 0 1 54
      21280 2 1 3 0 0 50
      21280 3 1 3 0 0 57
      21290 1 1 3 0 0 46
      21290 2 1 3 0 0 52
      21290 3 1 3 0 1 43
      21300 1 1 3 0 1 44
      21300 2 1 3 0 1 50
      21300 3 1 3 0 0 57
      21330 1 1 3 0 0 65
      21330 2 1 3 0 0 60
      21330 3 0 3 0 1 46
      21340 1 1 3 0 1 64
      21340 2 0 3 0 1 67
      21340 3 0 3 0 1 70
      21350 1 0 3 0 0 48
      21350 2 1 3 0 0 46
      21350 3 1 3 0 0 51
      21370 1 1 3 0 0 29
      21370 2 1 3 1 0 34
      21370 3 1 3 0 0 43
      21380 1 0 3 1 0 24
      21380 2 1 3 1 0 30
      21380 3 1 3 0 0 48
      21390 1 0 3 0 0 45
      21390 2 1 3 0 1 50
      21390 3 1 3 0 1 55
      21400 1 1 3 0 1 52
      21400 2 1 3 0 0 51
      21410 1 0 3 1 0 45
      21410 2 1 3 0 0 48
      21410 3 1 3 0 0 54
      21430 1 0 3 0 0 38
      21430 2 1 3 1 0 43
      21430 3 1 3 1 0 49
      21440 1 0 3 0 0 26
      21440 2 1 3 0 1 37
      21440 3 1 3 0 0 70
      21450 1 1 3 0 1 45
      21450 2 1 3 0 0 52
      21450 3 1 3 0 0 57
      21460 1 1 3 0 0 50
      21460 2 1 3 0 0 55
      21460 3 1 3 0 0 59
      21470 1 0 3 0 0 50
      21470 2 1 3 0 0 60
      21480 1 0 3 0 1 38
      21480 2 1 3 0 1 43
      21480 3 1 3 0 1 50
      21490 1 0 3 0 0 35
      21490 2 0 3 0 0 40
      21500 1 1 3 0 0 48
      21500 2 1 3 0 0 51
      21500 3 1 3 1 0 59
      21520 1 1 3 0 0 38
      21520 2 1 3 0 0 43
      21520 3 1 3 1 0 49
      21530 1 1 3 0 0 49
      21530 2 1 3 0 0 52
      21530 3 1 3 0 0 58
      21540 1 1 3 0 0 34
      21540 2 1 3 0 0 39
      21540 3 1 3 0 0 33
      21550 1 0 3 0 0 28
      21550 2 0 3 0 1 30
      21550 3 1 3 0 0 48
      21580 1 0 3 0 1 56
      21580 2 0 3 0 1 64
      21580 3 1 3 0 1 70
      21682 2 0 4 0 0 50
      21682 3 0 4 0 0 45
      21692 2 0 4 0 0 56
      21692 3 0 4 0 0 42
      21702 2 1 4 0 0 62
      21702 3 0 4 0 1 59
      21712 2 0 4 1 0 42
      21712 3 0 4 0 0 62
      21732 2 0 4 1 0 37
      21732 3 0 4 1 0 39
      21742 2 0 4 0 0 39
      21742 3 0 4 0 0 42
      21752 2 1 4 0 1 45
      21752 3 1 4 0 0 56
      21762 2 0 4 0 0 30
      21762 3 0 4 0 0 38
      21772 2 0 4 0 0 54
      21772 3 0 4 0 0 54
      21782 2 0 4 0 0 74
      21782 3 0 4 0 0 60
      21792 2 1 4 0 0 40
      21792 3 0 4 0 0 48
      21802 2 0 4 1 0 37
      21802 3 0 4 0 0 37
      21812 2 0 4 0 0 52
      21812 3 0 4 0 0 65
      21822 2 0 4 0 0 44
      21822 3 0 4 0 0 49
      21832 2 0 4 1 0 42
      21832 3 0 4 0 0 55
      21842 2 0 4 0 0 83
      21842 3 0 4 1 0 82
      21852 2 0 4 1 0 27
      21852 3 0 4 1 0 37
      21862 2 0 4 0 1 57
      21862 3 0 4 0 1 63
      21872 2 0 4 0 0 83
      21872 3 0 4 0 1 63
      21892 2 0 4 1 0 79
      21892 3 0 4 1 0 79
      21912 2 1 4 0 0 70
      21912 3 0 4 0 0 80
      21922 2 0 5 0 0 30
      21922 3 0 5 0 0 30
      21932 2 1 5 1 1 64
      21932 3 0 5 0 1 68
      21942 2 0 5 0 0 55
      21942 3 0 5 1 0 50
      21952 2 1 5 0 0 50
      21952 3 0 5 0 1 45
      21962 2 0 5 0 0 70
      21962 3 0 5 0 0 68
      21972 2 1 5 0 0 46
      21972 3 0 5 0 0 52
      21982 2 0 5 0 0 48
      21982 3 0 5 0 1 48
      21992 2 1 5 0 0 65
      21992 3 0 5 0 0 62
      22002 2 0 5 0 0 49
      22002 3 0 5 0 0 57
      22012 2 0 5 0 0 63
      22012 3 0 5 0 0 60
      22022 2 0 5 0 0 32
      22022 3 0 5 0 1 27
      22032 2 1 5 0 1 43
      22032 3 0 5 0 0 47
      22042 2 1 5 0 0 82
      22042 3 0 5 0 0 62
      22052 2 0 5 0 1 46
      22052 3 0 5 0 1 57
      22062 2 0 5 0 0 58
      22062 3 0 5 0 1 55
      22072 2 1 5 0 0 60
      22072 3 0 5 1 0 40
      22082 2 1 5 0 1 60
      22082 3 0 5 0 0 73
      22092 2 0 5 0 0 60
      22092 3 0 5 0 0 65
      22102 2 1 5 0 0 39
      22102 3 0 5 1 0 51
      22112 2 0 5 1 0 25
      22112 3 0 5 0 0 23
      23130 1 0 4 0 0 68
      23130 2 0 4 1 0 73
      23140 1 0 4 1 0 63
      23140 2 1 4 0 1 32
      23150 1 0 4 0 0 42
      23150 2 0 4 1 0 45
      23160 1 0 4 0 0 75
      23160 2 1 4 0 0 62
      23160 3 0 4 0 0 74
      23170 1 0 4 1 0 80
      23170 2 1 4 0 0 75
      23170 3 0 4 1 0 72
      23180 1 0 4 0 0 48
      23180 2 0 4 0 0 54
      23180 3 1 4 0 0 62
      23190 1 0 4 0 0 47
      23190 2 0 4 0 0 54
      23190 3 0 4 1 0 69
      23210 1 0 4 0 0 38
      23210 2 0 4 0 0 49
      23210 3 0 4 0 1 56
      23220 1 1 4 0 0 75
      23220 2 0 4 0 0 75
      23220 3 0 4 0 0 79
      23230 1 1 4 1 1 60
      23230 2 0 4 0 0 64
      23230 3 0 4 1 1 37
      23240 1 0 4 0 0 33
      23240 2 0 4 1 0 46
      23240 3 0 4 0 0 75
      23250 1 0 4 0 0 52
      23250 2 0 4 0 0 62
      23250 3 0 4 1 0 56
      23260 1 0 4 0 0 37
      23260 2 0 4 1 0 44
      23260 3 0 4 1 0 47
      23270 1 0 4 0 0 54
      23270 2 0 4 1 0 60
      23270 3 0 4 0 0 64
      23280 1 0 4 0 0 55
      23280 2 0 4 0 1 55
      23280 3 0 4 0 1 51
      23290 1 0 4 0 0 30
      23290 2 0 4 0 0 43
      23290 3 0 4 0 0 51
      23300 1 0 4 1 0 65
      23300 2 0 4 1 0 28
      23300 3 0 4 0 0 39
      23310 1 0 4 0 0 29
      23310 2 0 4 1 0 29
      23310 3 0 4 1 0 34
      23320 1 0 4 0 0 26
      23320 2 0 4 1 0 30
      23320 3 0 4 1 0 36
      23330 1 0 4 0 0 60
      23330 2 0 4 1 0 42
      23330 3 0 4 0 0 52
      23340 1 0 4 0 0 70
      23340 2 1 4 1 0 70
      23340 3 0 4 0 0 33
      23350 1 0 4 0 0 45
      23350 2 0 4 0 0 34
      23350 3 0 4 0 0 49
      23360 1 0 4 0 0 31
      23360 2 1 4 0 0 46
      23360 3 0 4 0 0 43
      23370 1 0 4 0 0 23
      23370 2 0 4 1 0 28
      23370 3 0 4 0 1 30
      23380 1 0 4 0 0 30
      23380 2 1 4 0 0 30
      23380 3 0 4 1 0 39
      23390 1 0 4 0 0 53
      23390 2 0 4 1 0 58
      23400 1 0 4 1 0 54
      23400 2 0 4 1 0 60
      23400 3 0 4 0 0 63
      23410 1 0 4 1 0 32
      23410 2 0 4 0 0 41
      23410 3 0 4 0 0 50
      23420 1 1 4 0 0 55
      23420 2 0 4 1 0 75
      23420 3 0 4 1 0 60
      23440 1 0 4 0 0 65
      23440 2 0 4 1 0 70
      23440 3 0 4 0 1 60
      23460 1 0 4 0 0 52
      23460 2 0 4 0 0 51
      23460 3 0 4 0 0 52
      23470 1 0 4 0 0 45
      23470 2 0 4 0 1 68
      23470 3 0 4 0 1 75
      23480 1 1 4 0 0 30
      23480 2 0 4 0 0 82
      23480 3 0 4 0 0 70
      23490 1 0 4 0 0 70
      23490 2 1 4 0 0 64
      23490 3 0 4 1 0 68
      23500 1 0 4 0 0 44
      23500 2 0 4 1 0 56
      23500 3 0 4 1 0 56
      23510 1 0 4 0 0 50
      23510 2 0 4 0 0 75
      23510 3 0 4 1 0 61
      23520 1 0 4 0 0 54
      23520 2 0 4 0 1 61
      23520 3 0 4 0 0 81
      23530 1 0 4 1 0 60
      23530 2 0 4 0 0 72
      23530 3 0 4 1 0 72
      23540 1 0 4 1 0 46
      23540 2 0 4 1 0 54
      23540 3 0 4 1 0 58
      23550 1 0 4 0 0 78
      23550 2 0 4 0 0 48
      23550 3 0 4 0 0 25
      23560 1 0 4 1 0 67
      23560 2 0 4 0 0 67
      23560 3 0 4 0 1 44
      23570 1 0 4 1 0 70
      23570 2 1 4 0 0 72
      23570 3 0 4 0 0 72
      23580 1 0 4 0 0 58
      23580 2 0 4 0 0 75
      23580 3 0 4 1 0 38
      23590 1 1 4 0 0 33
      23590 2 0 4 0 0 38
      23590 3 0 4 0 0 47
      23600 1 0 4 0 0 56
      23600 2 0 4 0 0 58
      23600 3 0 4 0 0 67
      23610 1 0 4 0 0 54
      23610 2 0 4 0 0 35
      23610 3 0 4 0 0 25
      23620 1 0 4 0 0 40
      23620 2 0 4 0 0 32
      23620 3 0 4 0 0 52
      23630 1 0 4 0 0 78
      23630 2 1 4 0 0 75
      23630 3 0 4 1 0 70
      23640 1 0 4 0 0 82
      23640 2 0 4 0 0 82
      23640 3 0 4 0 0 82
      23650 1 0 5 0 0 53
      23650 2 1 5 0 0 66
      23650 3 0 5 0 1 55
      23660 1 0 5 0 0 53
      23660 2 1 5 0 0 58
      23660 3 0 5 0 0 25
      23670 1 0 5 0 0 64
      23670 2 1 5 0 0 69
      23670 3 0 5 0 0 75
      23680 1 0 5 1 0 62
      23680 2 1 5 0 0 70
      23680 3 0 5 0 0 80
      23690 1 0 5 0 0 28
      23690 2 0 5 0 0 46
      23690 3 0 5 0 0 48
      23700 1 0 5 0 0 52
      23700 2 0 5 0 0 50
      23700 3 0 5 1 0 50
      23710 1 0 5 0 0 58
      23710 2 0 5 0 0 62
      23710 3 0 5 1 0 46
      23720 1 0 5 1 0 23
      23720 2 0 5 0 1 25
      23720 3 0 5 0 0 23
      23730 1 0 5 0 0 37
      23730 2 1 5 0 0 42
      23730 3 0 5 0 1 45
      23740 1 0 5 0 0 54
      23740 2 1 5 1 0 55
      23740 3 0 5 0 0 60
      23750 1 0 5 0 0 55
      23750 2 1 5 0 0 55
      23750 3 0 5 0 0 65
      23760 1 0 5 0 0 58
      23760 2 0 5 0 0 77
      23760 3 0 5 0 0 77
      23770 1 0 5 0 0 50
      23770 2 0 5 0 0 36
      23770 3 0 5 0 0 40
      23780 1 0 5 0 1 48
      23780 2 1 5 0 1 50
      23780 3 0 5 0 1 38
      23790 1 0 5 0 0 24
      23790 2 1 5 0 0 35
      23790 3 0 5 0 0 28
      23800 1 0 5 0 0 56
      23800 2 1 5 0 0 58
      23800 3 0 5 1 0 60
      23810 1 0 5 0 0 45
      23810 2 1 5 0 0 37
      23810 3 0 5 0 0 53
      23820 1 0 5 1 0 26
      23820 2 0 5 0 1 30
      23820 3 0 5 0 0 64
      23830 1 0 5 0 0 40
      23830 2 0 5 1 0 48
      23830 3 0 5 0 0 53
      23840 1 0 5 0 0 50
      23840 2 1 5 0 0 60
      23840 3 0 5 1 0 45
      23850 1 0 5 0 0 40
      23850 2 1 5 0 0 45
      23850 3 0 5 0 0 50
      23860 1 0 5 0 0 30
      23860 2 1 5 1 0 35
      23860 3 0 5 0 0 40
      23870 1 0 5 1 0 36
      23870 2 1 5 1 0 65
      23870 3 0 5 0 1 40
      23880 1 1 5 0 0 38
      23880 2 0 5 0 0 31
      23880 3 0 5 0 1 60
      23890 1 0 5 0 1 42
      23890 2 0 5 0 1 47
      23890 3 0 5 0 1 47
      23900 1 0 5 0 0 26
      23900 2 1 5 1 1 74
      23900 3 0 5 0 1 78
      23910 1 0 5 0 0 30
      23910 2 1 5 0 0 37
      23910 3 0 5 0 0 40
      23920 1 0 5 0 0 68
      23920 2 0 5 0 1 65
      23920 3 0 5 0 1 61
      23930 1 0 5 0 1 48
      23930 2 0 5 0 0 38
      23930 3 0 5 1 0 38
      23940 1 1 5 0 0 40
      23940 2 1 5 0 0 52
      23940 3 0 5 0 0 58
      23950 1 0 5 0 0 70
      23950 2 1 5 0 1 42
      23950 3 0 5 0 0 42
      23970 1 0 5 0 1 28
      23970 2 1 5 0 1 50
      23970 3 0 5 1 0 29
      23980 1 0 5 0 0 25
      23980 2 0 5 0 0 35
      23980 3 0 5 0 0 39
      23990 1 0 5 0 0 45
      23990 2 0 5 0 0 46
      23990 3 0 5 0 1 43
      24000 1 0 5 0 1 48
      24000 2 0 5 1 0 53
      24000 3 0 5 0 1 52
      24010 1 1 5 0 0 53
      24010 2 1 5 0 0 62
      24010 3 0 5 1 0 55
      24020 1 0 5 0 1 25
      24020 2 0 5 0 1 30
      24020 3 0 5 0 1 38
      24030 1 0 5 0 1 30
      24030 2 0 5 0 1 55
      24030 3 0 5 0 1 41
      24040 1 0 5 0 0 70
      24040 2 0 5 1 0 75
      24040 3 0 5 0 0 81
      24050 1 0 5 0 0 38
      24050 2 0 5 0 0 42
      24050 3 0 5 0 0 49
      24060 1 0 5 0 1 45
      24060 2 1 5 1 0 45
      24060 3 0 5 0 0 60
      24070 1 0 5 0 1 32
      24070 2 0 5 0 0 45
      24070 3 0 5 0 0 50
      24080 1 0 5 0 1 25
      24080 2 1 5 0 1 30
      24080 3 0 5 0 0 37
      24090 1 0 5 0 0 40
      24090 2 0 5 0 0 60
      24090 3 0 5 1 0 57
      24100 1 0 5 0 0 55
      24100 2 0 5 0 0 65
      24100 3 0 5 0 0 30
      24110 1 0 5 1 0 26
      24110 2 0 5 0 1 40
      24110 3 0 5 0 1 64
      24120 1 0 5 0 0 35
      24120 2 1 5 0 0 38
      24120 3 0 5 0 0 40
      24130 1 1 5 0 0 60
      24130 2 0 5 0 1 60
      24130 3 0 5 0 1 75
      24140 1 0 5 0 0 35
      24140 2 0 5 0 0 65
      24140 3 0 5 0 0 63
      24150 1 0 5 0 0 30
      24150 2 1 5 0 0 35
      24150 3 0 5 0 0 46
      24160 1 0 5 0 0 27
      24160 2 1 5 1 0 31
      24160 3 0 5 0 0 62
      24780 1 1 3 0 0 46
      24780 2 1 3 0 0 40
      end
      label values t year

      Comment


      • #4
        With the data in post #3 I get the same error message as you.
        Code:
        probit y i.v##i.x1 i.x2 x3 i.t, cl(id)
        margins v, dydx(x1) pwcompare(pveffects) mcompare(bonferroni)
        marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
        
        _term not labeled
        r(182);
        I don't know if your solution to the problem is correct.

        Comment

        Working...
        X