Dear all,
I am struggling with a graphical illustration for the following situation:
For a first impression I would like to have a graphical illustration. I tried the following, but I am not sure whether this is the best way for my intention:
Do you have any other ideas for a better illustration?
Thanks and have a great weekend,
Sam
I am using Stata 14, version 1.0.4 28jan2009 of logitcprplot. Here is some example data:
I am struggling with a graphical illustration for the following situation:
- "newvar": binary outcome variable indicating whether someone buys a new car or not.
- "incentive": variable of interest is a summary measure that captures different aspects (finances, needs etc.) influencing the purchase decision.
For a first impression I would like to have a graphical illustration. I tried the following, but I am not sure whether this is the best way for my intention:
Code:
logit newcar incentive logitcprplot incentive, rcspline(ci) by(female)
Thanks and have a great weekend,
Sam
I am using Stata 14, version 1.0.4 28jan2009 of logitcprplot. Here is some example data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte(ID newcar) double incentive byte age float female 3 0 .03972538035415816 28 1 4 0 .16682683928769018 33 1 5 0 .0012173821879535836 31 1 6 0 .20561523090611494 39 1 7 0 .13439488561921117 28 0 8 0 .09112885675571442 30 0 9 0 .04690987263185393 26 1 10 0 .04690987263185393 26 1 11 0 .08978829754195784 31 0 12 0 .12111005208256041 26 0 14 1 .04059250267250229 37 1 15 1 .20676567212001254 37 0 17 0 .32137271478198465 38 1 18 0 .02069449099176917 29 1 20 0 .0012173821879535836 31 1 21 1 .16682683928769018 33 1 22 1 .02126607470428645 37 1 23 1 .26704398470400553 33 0 24 1 .1715611891895402 36 0 25 1 .11721748713877664 31 0 26 1 .32483437782415053 33 0 29 1 .3885486604017397 39 0 32 1 .32137271478198465 38 1 33 0 .04059250267250229 37 1 34 0 .23438664769315412 34 1 35 1 .14764137688628484 35 0 36 1 .3433477964308977 38 0 37 0 .11965222819764557 30 0 38 0 .011503910217765471 32 0 39 0 .0457394323233342 27 1 40 0 .0537767431407912 26 1 41 0 .11191945729808164 25 0 42 1 .13861102790755997 27 0 43 1 .13133017107293066 29 0 44 0 .043554096752659664 25 1 45 0 .052776501982149414 27 1 46 1 .07428374347310765 35 1 47 0 .08841490098710833 33 1 48 0 .04690987263185393 26 1 49 0 .11662819014695244 26 0 50 0 .13133017107293066 29 0 51 1 .32137271478198465 38 1 52 1 .21262513175234668 35 0 53 1 .25588355968243515 39 0 54 1 .20129658769110298 36 0 55 1 .0443966984639766 30 0 56 0 .1023023256345485 28 0 57 1 .07428374347310765 35 1 59 1 .08841490098710833 33 1 60 0 .03268199621188424 27 1 61 0 .10743767074877218 26 0 62 0 .0457394323233342 27 1 63 0 .055220528743400873 25 1 64 0 .10040844108317014 29 0 65 1 .2740306391242877 38 0 66 1 .19683912030636308 36 0 67 1 .03686372394791417 32 0 70 1 .02126607470428645 37 1 71 1 .4323128507444171 39 1 72 0 .022917451373031236 28 1 74 0 .07753927869910902 34 1 75 0 .0537767431407912 26 1 76 0 .05017170816564163 29 1 78 0 .1715611891895402 36 0 79 0 .26182369323299726 34 0 80 0 .12957276106988652 28 0 81 0 .11662819014695244 26 0 82 1 .09861978330573328 27 0 83 1 .30891493628814753 39 0 84 0 .05017170816564163 29 1 85 0 .0537767431407912 26 1 86 0 .043881497903992 28 1 87 1 .09112885675571442 30 0 88 1 .13439488561921117 28 0 90 0 .03814587588655128 29 1 92 1 .22506447668557927 38 0 93 0 .10471420373182062 29 0 94 1 .20129658769110298 36 0 95 1 .35704698117849354 34 0 96 0 .10356424623493078 27 0 97 0 .07753927869910902 34 1 99 1 .30891493628814753 39 0 100 1 .26704398470400553 33 0 end
Comment