Hello all, I am running two models using melogit. Both models contain the same variables and a couple of interaction terms as well. I want to test to see whether there are differences of coefficients for a certain variable from one model as opposed to another. Below is the result of model 1:
Below is the output of model 2:
My question is how should I compare to see whether the racial disparities in model 1 is sig different from that in model 2? Many thanks!
Code:
melogit gedtimehi c.grade##c.grade ib6.RACE ib6.RACE#c.grade || kindergarten:, || studentnum2:, cov(un) Fitting fixed-effects model: Iteration 0: log likelihood = -6232.0048 Iteration 1: log likelihood = -6221.352 Iteration 2: log likelihood = -6221.3449 Iteration 3: log likelihood = -6221.3449 Refining starting values: Grid node 0: log likelihood = -5295.7391 Fitting full model: Iteration 0: log likelihood = -5295.7391 (not concave) Iteration 1: log likelihood = -5274.2167 Iteration 2: log likelihood = -4906.4134 Iteration 3: log likelihood = -4848.274 Iteration 4: log likelihood = -4825.8941 Iteration 5: log likelihood = -4824.2776 Iteration 6: log likelihood = -4823.8966 Iteration 7: log likelihood = -4823.824 Iteration 8: log likelihood = -4823.8111 Iteration 9: log likelihood = -4823.8083 Iteration 10: log likelihood = -4823.8077 Iteration 11: log likelihood = -4823.8077 Mixed-effects logistic regression Number of obs = 11088 ----------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+------------------------------------------ kindergarten | 41 2 270.4 588 studentnum2 | 4261 1 2.6 10 ----------------------------------------------------------- Integration method: mvaghermite Integration points = 7 Wald chi2(8) = 147.24 Log likelihood = -4823.8077 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------------ gedtimehi | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- gradelvl | .2788558 .0577974 4.82 0.000 .165575 .3921366 | c.gradelvl#c.gradelvl | -.0458036 .0062849 -7.29 0.000 -.0581218 -.0334854 | RACE | African American | -.943746 .2228096 -4.24 0.000 -1.380445 -.5070473 Asian | -.4564835 .2429516 -1.88 0.060 -.9326599 .0196928 Hispanic | .0272462 .2178825 0.13 0.900 -.3997956 .454288 | RACE#c.gradelvl | African American | -.0585262 .0475355 -1.23 0.218 -.151694 .0346415 Asian | .1767307 .058828 3.00 0.003 .06143 .2920313 Hispanic | -.1326549 .0477209 -2.78 0.005 -.2261861 -.0391237 | _cons | 3.26059 .2499694 13.04 0.000 2.770659 3.750522 -------------------------+---------------------------------------------------------------- kindergarten | var(_cons)| 1.161754 .2758725 .7294345 1.850301 -------------------------+---------------------------------------------------------------- kindergarten>studentnum2 | var(_cons)| 13.27539 1.272639 11.00138 16.01944 ------------------------------------------------------------------------------------------ LR test vs. logistic regression: chi2(2) = 2795.07 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.
Code:
. melogit gedtimehi c.grade##c.grade ib6.RACE ib6.RACE#c.grade || studentnum2:, vce(cluster kindergarten) Fitting fixed-effects model: Iteration 0: log likelihood = -6232.0048 Iteration 1: log likelihood = -6221.352 Iteration 2: log likelihood = -6221.3449 Iteration 3: log likelihood = -6221.3449 Refining starting values: Grid node 0: log likelihood = -5496.5717 Fitting full model: Iteration 0: log pseudolikelihood = -5496.5717 Iteration 1: log pseudolikelihood = -5073.0641 Iteration 2: log pseudolikelihood = -4933.6525 Iteration 3: log pseudolikelihood = -4906.986 Iteration 4: log pseudolikelihood = -4905.6049 Iteration 5: log pseudolikelihood = -4905.6955 Iteration 6: log pseudolikelihood = -4905.7086 Iteration 7: log pseudolikelihood = -4905.7108 Iteration 8: log pseudolikelihood = -4905.7114 Iteration 9: log pseudolikelihood = -4905.7116 Mixed-effects logistic regression Number of obs = 11088 Group variable: studentnum2 Number of groups = 4261 Obs per group: min = 1 avg = 2.6 max = 10 Integration method: mvaghermite Integration points = 7 Wald chi2(8) = 71.68 Log pseudolikelihood = -4905.7116 Prob > chi2 = 0.0000 (Std. Err. adjusted for 41 clusters in kindergarten) --------------------------------------------------------------------------------------- | Robust gedtimehi | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- gradelvl | .2876227 .0737832 3.90 0.000 .1430102 .4322352 | c.gradelvl#c.gradelvl | -.0457968 .009275 -4.94 0.000 -.0639754 -.0276181 | RACE | African American | -.8329582 .2451435 -3.40 0.001 -1.313431 -.3524858 Asian | -.5298281 .2384022 -2.22 0.026 -.9970879 -.0625684 Hispanic | .2371843 .2034578 1.17 0.244 -.1615857 .6359544 | RACE#c.gradelvl | African American | -.0596044 .0575145 -1.04 0.300 -.1723307 .053122 Asian | .1852394 .0773328 2.40 0.017 .0336699 .3368089 Hispanic | -.1416672 .0580928 -2.44 0.015 -.255527 -.0278073 | _cons | 3.325987 .2647707 12.56 0.000 2.807046 3.844928 ----------------------+---------------------------------------------------------------- studentnum2 | var(_cons)| 16.41135 2.886854 11.62553 23.16732 ---------------------------------------------------------------------------------------
Comment