Hi,
I have an unbalanced panel dataset (N=2976, T=13), using survey responses.
My dependent variable is the household's ability to save (saving=1 if able to save, 0 otherwise).
hhid is the Household's unique identifier, and the data is yearly.
I am computing the AMEs for my model in Stata.
I am struggling to understand the difference between -margins, dydx(*)- and -margins, dydx(*) predict(pu0)-.
I see that the latter assumes "Pr(saving=1 | u_i=0)" in Stata but I am unsure of what this implies and which margins method I should be using.
I would greatly appreciate it if someone could help me to understand the difference? Many thanks
I have an unbalanced panel dataset (N=2976, T=13), using survey responses.
My dependent variable is the household's ability to save (saving=1 if able to save, 0 otherwise).
hhid is the Household's unique identifier, and the data is yearly.
I am computing the AMEs for my model in Stata.
I am struggling to understand the difference between -margins, dydx(*)- and -margins, dydx(*) predict(pu0)-.
I see that the latter assumes "Pr(saving=1 | u_i=0)" in Stata but I am unsure of what this implies and which margins method I should be using.
I would greatly appreciate it if someone could help me to understand the difference? Many thanks
Code:
. xtprobit saving age, nolog Random-effects probit regression Number of obs = 12,951 Group variable: hhid Number of groups = 2,930 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 4.4 max = 13 Integration method: mvaghermite Integration pts. = 12 Wald chi2(1) = 0.07 Log likelihood = -6746.3674 Prob > chi2 = 0.7969 ------------------------------------------------------------------------------ saving | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0005127 .001992 0.26 0.797 -.0033914 .0044169 _cons | -.5697777 .111846 -5.09 0.000 -.7889918 -.3505635 -------------+---------------------------------------------------------------- /lnsig2u | .7562628 .0613049 .6361074 .8764183 -------------+---------------------------------------------------------------- sigma_u | 1.459555 .044739 1.37445 1.549929 rho | .6805418 .013328 .653873 .7060795 ------------------------------------------------------------------------------ LR test of rho=0: chibar2(01) = 3740.02 Prob >= chibar2 = 0.000 . margins, dydx(age) Average marginal effects Number of obs = 12,951 Model VCE : OIM Expression : Pr(saving=1), predict(pr) dy/dx w.r.t. : age ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0001103 .0004288 0.26 0.797 -.0007302 .0009508 ------------------------------------------------------------------------------ . margins, dydx(age) predict(pu0) Average marginal effects Number of obs = 12,951 Model VCE : OIM Expression : Pr(saving=1 | u_i=0), predict(pu0) dy/dx w.r.t. : age ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0001767 .000687 0.26 0.797 -.0011697 .0015231 ------------------------------------------------------------------------------
Comment