Hi,
I have an unbalanced panel dataset (N=2976, T=13), using survey responses.
My dependent variable is the household's ability to save (saving=1 if able to save, 0 otherwise), and I intend to use -xtprobit, re- to run my model.
hhid is the Household's unique identifier, and the data is yearly.
I run my regression as follows:
I then compute average marginal effects (AMEs):
Question 1: Please could you advise me if you notice anything incorrect in the AME calculation?
Question 2:For income, how might I interpret the AME? Would it be that a 1 unit increase in income is associated with an increase in the probability of saving by 0.27 percentage points?
Question 3: Is there a way to establish whether this association is merely an association (i.e. correlation), or whether it may be a direct causation? For example I have heard of Granger causality tests in time series and wondered if I may apply a similar concept to panel data, or if you would be able to recommend any tests please?
Thanks in advance
I have an unbalanced panel dataset (N=2976, T=13), using survey responses.
My dependent variable is the household's ability to save (saving=1 if able to save, 0 otherwise), and I intend to use -xtprobit, re- to run my model.
hhid is the Household's unique identifier, and the data is yearly.
Code:
. xtset hhid year panel variable: hhid (unbalanced) time variable: year, 2004 to 2016, but with gaps delta: 1 unit . xtdes hhid: 6, 21, ..., 89972 n = 2976 year: 2004, 2005, ..., 2016 T = 13 Delta(year) = 1 unit Span(year) = 13 periods (hhid*year uniquely identifies each observation) Distribution of T_i: min 5% 25% 50% 75% 95% max 1 1 1 3 7 13 13
Code:
. xtprobit saving $xlist $controllist i.year, re vce(cluster hhid) nolog Calculating robust standard errors: Random-effects probit regression Number of obs = 5,248 Group variable: hhid Number of groups = 1,721 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 3.0 max = 13 Integration method: mvaghermite Integration pts. = 12 Wald chi2(32) = 1015.46 Log pseudolikelihood = -2326.9353 Prob > chi2 = 0.0000 (Std. Err. adjusted for 1,721 clusters in hhid) ------------------------------------------------------------------------------ | Robust saving | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- prec | .0051596 .010072 0.51 0.608 -.0145812 .0249004 purchase | -.0063193 .0096012 -0.66 0.510 -.0251374 .0124987 retire | .0077005 .0077755 0.99 0.322 -.0075392 .0229401 bequest | .0040619 .0062252 0.65 0.514 -.0081392 .016263 mediumh | .2634191 .0520474 5.06 0.000 .1614082 .3654301 longh | .2016656 .1390572 1.45 0.147 -.0708814 .4742127 male | .2665245 .0934311 2.85 0.004 .0834029 .4496461 age | -.0152692 .0155381 -0.98 0.326 -.0457233 .0151849 | c.age#c.age | .0001046 .0001458 0.72 0.473 -.0001812 .0003903 | employed | -.015734 .1085609 -0.14 0.885 -.2285093 .1970414 retired | .0340827 .1105945 0.31 0.758 -.1826785 .2508438 health | .0917022 .0439204 2.09 0.037 .0056198 .1777845 income | 4.70e-06 1.37e-06 3.44 0.001 2.03e-06 7.38e-06 risk | -.0016178 .004678 -0.35 0.729 -.0107865 .0075508 selfcontrol | .2846024 .022067 12.90 0.000 .2413519 .3278529 child | -.1379202 .0371526 -3.71 0.000 -.2107378 -.0651025 saving1exp | 1.636882 .0604239 27.09 0.000 1.518453 1.755311 partner | -.1470189 .0840967 -1.75 0.080 -.3118455 .0178077 uni | .1797381 .0828612 2.17 0.030 .0173332 .3421431 owner | .1961271 .0746949 2.63 0.009 .0497278 .3425264 | year | 2005 | -.9836225 .1001202 -9.82 0.000 -1.179854 -.7873906 2006 | -1.076696 .1112256 -9.68 0.000 -1.294694 -.8586978 2007 | -1.03664 .1086714 -9.54 0.000 -1.249632 -.8236479 2008 | -.9681669 .1064297 -9.10 0.000 -1.176765 -.7595685 2009 | -.8765504 .1051705 -8.33 0.000 -1.082681 -.6704199 2010 | -1.093482 .1064268 -10.27 0.000 -1.302075 -.8848896 2011 | -1.023239 .1335747 -7.66 0.000 -1.28504 -.761437 2012 | -.9060006 .131999 -6.86 0.000 -1.164714 -.6472873 2013 | -1.018888 .1422776 -7.16 0.000 -1.297747 -.7400292 2014 | -1.023546 .1235291 -8.29 0.000 -1.265658 -.7814332 2015 | -.9400109 .1363781 -6.89 0.000 -1.207307 -.6727149 2016 | -1.099619 .1318772 -8.34 0.000 -1.358094 -.8411444 | _cons | -2.061224 .4942043 -4.17 0.000 -3.029846 -1.092601 -------------+---------------------------------------------------------------- /lnsig2u | -.8696584 .1389346 -1.141965 -.5973516 -------------+---------------------------------------------------------------- sigma_u | .6473752 .0449714 .56497 .7417999 rho | .2953254 .0289135 .2419597 .3549498 ------------------------------------------------------------------------------
Code:
. sum income Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- income | 7,458 32699.04 32851.71 0 1370179 . margins, dydx(income) Average marginal effects Number of obs = 5,248 Model VCE : Robust Expression : Pr(saving=1), predict(pr) dy/dx w.r.t. : income ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- income | 1.09e-06 3.28e-07 3.32 0.001 4.45e-07 1.73e-06 ------------------------------------------------------------------------------ . di 1.09*exp(-6) .00270184
Question 2:For income, how might I interpret the AME? Would it be that a 1 unit increase in income is associated with an increase in the probability of saving by 0.27 percentage points?
Question 3: Is there a way to establish whether this association is merely an association (i.e. correlation), or whether it may be a direct causation? For example I have heard of Granger causality tests in time series and wondered if I may apply a similar concept to panel data, or if you would be able to recommend any tests please?
Thanks in advance
Comment