Hello, I am running three-level Multilevel Model as follow
L1 : Dependant = intercept + eijk
L2 : PI0 = BETA00k + BETA01k*(VAR1) + BETA02k*(VAR2) + rojk
L3 : BETA00k = GAMMA000 + uook
BETA01k = GAMMA001 + uo1k
BETA02k = GAMMA002 + uo2k
and the following is my code
. xtmixed y x1 x2, || schid: x1 x2, covariance(unstructured) || clssid:, var iter(50)
the code is right? cause level 3 random effect value is ridiculous like below, and there are no standard error.
Please let me know how to solve the problem.
Mixed-effects REML regression Number of obs = 10193
----------------------------------------------------------------------------------------------------------------------
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
----------------+-----------------------------------------------------------------------------------------------------
schid | 31 186 328.8 586
clssid | 347 14 29.4 43
----------------------------------------------------------------------------------------------------------------------
Wald chi2(2) = 199.28
Log restricted-likelihood = -53970.631 Prob > chi2 = 0.0000
-----------------------------------------------------------------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+---------------------------------------------------------------------------------------------------------------------------
x1 | 17.46353 8.210631 2.13 0.033 1.370986 33.55607
x2 | 93.73141 9.326184 10.05 0.000 75.45242 112.0104
_cons | -139.4698 23.09094 -6.04 0.000 -184.7272 -94.21242
-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
schid: Unstructured |
var(x1) | 5.872092 . . .
var(x2) | 5.110645 . . .
var(_cons) | 32.12552 . . .
cov(x1,x2) | -.2876809 . . .
cov(x1,_cons) | -4.372661 . . .
cov(x2,_cons) | -4.248289 . . .
-----------------------------+-----------------------------------------------------------------------------------------------------------
clssid: Identity |
var(_cons) | 320.8363 . . .
-----------------------------+-----------------------------------------------------------------------------------------------------------
var(Residual) | 2195.363 . . .
-----------------------------------------------------------------------------------------------------------------------------------------
LR test vs. linear regression: chi2(7) = 1051.61 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
Warning: convergence not achieved; estimates are based on iterated EM
L1 : Dependant = intercept + eijk
L2 : PI0 = BETA00k + BETA01k*(VAR1) + BETA02k*(VAR2) + rojk
L3 : BETA00k = GAMMA000 + uook
BETA01k = GAMMA001 + uo1k
BETA02k = GAMMA002 + uo2k
and the following is my code
. xtmixed y x1 x2, || schid: x1 x2, covariance(unstructured) || clssid:, var iter(50)
the code is right? cause level 3 random effect value is ridiculous like below, and there are no standard error.
Please let me know how to solve the problem.
Mixed-effects REML regression Number of obs = 10193
----------------------------------------------------------------------------------------------------------------------
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
----------------+-----------------------------------------------------------------------------------------------------
schid | 31 186 328.8 586
clssid | 347 14 29.4 43
----------------------------------------------------------------------------------------------------------------------
Wald chi2(2) = 199.28
Log restricted-likelihood = -53970.631 Prob > chi2 = 0.0000
-----------------------------------------------------------------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+---------------------------------------------------------------------------------------------------------------------------
x1 | 17.46353 8.210631 2.13 0.033 1.370986 33.55607
x2 | 93.73141 9.326184 10.05 0.000 75.45242 112.0104
_cons | -139.4698 23.09094 -6.04 0.000 -184.7272 -94.21242
-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
schid: Unstructured |
var(x1) | 5.872092 . . .
var(x2) | 5.110645 . . .
var(_cons) | 32.12552 . . .
cov(x1,x2) | -.2876809 . . .
cov(x1,_cons) | -4.372661 . . .
cov(x2,_cons) | -4.248289 . . .
-----------------------------+-----------------------------------------------------------------------------------------------------------
clssid: Identity |
var(_cons) | 320.8363 . . .
-----------------------------+-----------------------------------------------------------------------------------------------------------
var(Residual) | 2195.363 . . .
-----------------------------------------------------------------------------------------------------------------------------------------
LR test vs. linear regression: chi2(7) = 1051.61 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
Warning: convergence not achieved; estimates are based on iterated EM
Comment