Dear Stata-Listers,
INFO:
I conduct research on unexplained (by firm performance) CEO compensation (variable UCOMP). To analyse if these unexplained parts of compensation are informative about future firm performance I want to run a regression with industry and year fixed effects.
The dataset has been trimmed to the fiscal years (fyear) 2000-2005, as there is a regulatory change in 2003 that I want to utilise to introduce exogeneity and to introduce a difference-in-difference perspective in the analysis (which in a second step of the analysis should be further extended). The indicator variable POST equals 1 for the time frame 2003-2005 and 0 for 2000-2002. Moreover, as I need to establish a certain level of CEO tenure to wipe out effects related to the first year in office and to establish a first difference, observations are only included in the sample if tenure is >= 3 years. This, however, leads to a unbalanced sample with gaps as for each firm only some fiscal years are included, which consequently results in a unbalanced sample with gaps.
PROBLEM:
According to what I read about running regressions in Stata, xtreg, fe should produce the same results as reg with factor variable inclusion. This is however not the case, which I suspect is due to the fact that xtreg, fe uses gvkey (firm id) as panel variable; i.e. producing firm fixed effects instead of industry fixed effects. Am I right? Note that I cannot xtset industry fixed effects variable sic_Comp_2d contains 2-digit SIC codes to classify the firms industry) as this is not a unique identifier, as I suspect.
When running a regression using xtreg, fe all firm fixed effects are omitted.
Note: the prefix "D_" indicates that the variables are in first differences form which I generated before introducing tenure, which cut the sample size, to avoid Stata creating first differences that then relate to the last observation (as there are gaps in the data due to the tenure precondition, as said above) and not to the last year.
I do understand, if anything, that this result is just logical as the industry effects include several firms and, out of the perspective of firm level the industry dummies are constants that are to be omitted. The problem now is that the factor variable 2005.fyear is omitted if using the reg command with factor variables instead:
I assume this is due to the collinearity of POST and fyear:
I am afraid I have to show off extra ordinary levels of lacking Stata as well as general statistic literacy now, but: Is there anything I can do about this? If yes, what? Please, guide me through the steps. If no, – and this is obviously key to me – are the current results of any use or, well, just elaborate waste?
For your help I thank you very much in advance!
Best regards,
Roman
INFO:
I conduct research on unexplained (by firm performance) CEO compensation (variable UCOMP). To analyse if these unexplained parts of compensation are informative about future firm performance I want to run a regression with industry and year fixed effects.
The dataset has been trimmed to the fiscal years (fyear) 2000-2005, as there is a regulatory change in 2003 that I want to utilise to introduce exogeneity and to introduce a difference-in-difference perspective in the analysis (which in a second step of the analysis should be further extended). The indicator variable POST equals 1 for the time frame 2003-2005 and 0 for 2000-2002. Moreover, as I need to establish a certain level of CEO tenure to wipe out effects related to the first year in office and to establish a first difference, observations are only included in the sample if tenure is >= 3 years. This, however, leads to a unbalanced sample with gaps as for each firm only some fiscal years are included, which consequently results in a unbalanced sample with gaps.
Code:
xtset
HTML Code:
. xtset panel variable: gvkey (unbalanced) time variable: fyear, 2000 to 2005, but with gaps delta: 1 year
According to what I read about running regressions in Stata, xtreg, fe should produce the same results as reg with factor variable inclusion. This is however not the case, which I suspect is due to the fact that xtreg, fe uses gvkey (firm id) as panel variable; i.e. producing firm fixed effects instead of industry fixed effects. Am I right? Note that I cannot xtset industry fixed effects variable sic_Comp_2d contains 2-digit SIC codes to classify the firms industry) as this is not a unique identifier, as I suspect.
Code:
xtset sic_Comp_2d fyear
HTML Code:
. xtset sic_Comp_2d fyear repeated time values within panel r(451);
Code:
xtreg D_ROE_lead1_win c.UCOMP##i.POST D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d, fe vce(r)
HTML Code:
. xtreg D_ROE_lead1_win c.UCOMP##i.POST D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d, fe vce(r) note: 10.sic_Comp_2d omitted because of collinearity note: 13.sic_Comp_2d omitted because of collinearity note: 14.sic_Comp_2d omitted because of collinearity note: 15.sic_Comp_2d omitted because of collinearity note: 16.sic_Comp_2d omitted because of collinearity note: 20.sic_Comp_2d omitted because of collinearity note: 21.sic_Comp_2d omitted because of collinearity note: 22.sic_Comp_2d omitted because of collinearity note: 23.sic_Comp_2d omitted because of collinearity note: 24.sic_Comp_2d omitted because of collinearity note: 25.sic_Comp_2d omitted because of collinearity note: 26.sic_Comp_2d omitted because of collinearity note: 27.sic_Comp_2d omitted because of collinearity note: 28.sic_Comp_2d omitted because of collinearity note: 29.sic_Comp_2d omitted because of collinearity note: 30.sic_Comp_2d omitted because of collinearity note: 31.sic_Comp_2d omitted because of collinearity note: 32.sic_Comp_2d omitted because of collinearity note: 33.sic_Comp_2d omitted because of collinearity note: 34.sic_Comp_2d omitted because of collinearity note: 35.sic_Comp_2d omitted because of collinearity note: 36.sic_Comp_2d omitted because of collinearity note: 37.sic_Comp_2d omitted because of collinearity note: 38.sic_Comp_2d omitted because of collinearity note: 39.sic_Comp_2d omitted because of collinearity note: 40.sic_Comp_2d omitted because of collinearity note: 42.sic_Comp_2d omitted because of collinearity note: 44.sic_Comp_2d omitted because of collinearity note: 45.sic_Comp_2d omitted because of collinearity note: 47.sic_Comp_2d omitted because of collinearity note: 48.sic_Comp_2d omitted because of collinearity note: 49.sic_Comp_2d omitted because of collinearity note: 50.sic_Comp_2d omitted because of collinearity note: 51.sic_Comp_2d omitted because of collinearity note: 52.sic_Comp_2d omitted because of collinearity note: 53.sic_Comp_2d omitted because of collinearity note: 54.sic_Comp_2d omitted because of collinearity note: 55.sic_Comp_2d omitted because of collinearity note: 56.sic_Comp_2d omitted because of collinearity note: 57.sic_Comp_2d omitted because of collinearity note: 58.sic_Comp_2d omitted because of collinearity note: 59.sic_Comp_2d omitted because of collinearity note: 60.sic_Comp_2d omitted because of collinearity note: 61.sic_Comp_2d omitted because of collinearity note: 62.sic_Comp_2d omitted because of collinearity note: 63.sic_Comp_2d omitted because of collinearity note: 64.sic_Comp_2d omitted because of collinearity note: 67.sic_Comp_2d omitted because of collinearity note: 70.sic_Comp_2d omitted because of collinearity note: 72.sic_Comp_2d omitted because of collinearity note: 73.sic_Comp_2d omitted because of collinearity note: 75.sic_Comp_2d omitted because of collinearity note: 78.sic_Comp_2d omitted because of collinearity note: 79.sic_Comp_2d omitted because of collinearity note: 80.sic_Comp_2d omitted because of collinearity note: 82.sic_Comp_2d omitted because of collinearity note: 83.sic_Comp_2d omitted because of collinearity note: 87.sic_Comp_2d omitted because of collinearity note: 99.sic_Comp_2d omitted because of collinearity Fixed-effects (within) regression Number of obs = 4,387 Group variable: gvkey Number of groups = 946 R-sq: Obs per group: within = 0.1543 min = 1 between = 0.0841 avg = 4.6 overall = 0.1266 max = 6 F(6,945) = 25.44 corr(u_i, Xb) = -0.1115 Prob > F = 0.0000 (Std. Err. adjusted for 946 clusters in gvkey) --------------------------------------------------------------------------------------- | Robust D_ROE_lead1_win | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- UCOMP | .0384001 .0151404 2.54 0.011 .0086874 .0681127 1.POST | .0384032 .0066631 5.76 0.000 .025327 .0514795 | POST#c.UCOMP | 1 | -.0362169 .0188553 -1.92 0.055 -.0732199 .0007862 | D_RET_win | .0318201 .0052504 6.06 0.000 .0215164 .0421238 D_ROE_win | -.3665595 .0403363 -9.09 0.000 -.4457185 -.2874004 D_logSALES_by2002_win | -.0649946 .0282786 -2.30 0.022 -.1204908 -.0094984 | sic_Comp_2d | 10 | 0 (omitted) 13 | 0 (omitted) 14 | 0 (omitted) 15 | 0 (omitted) 16 | 0 (omitted) 20 | 0 (omitted) 21 | 0 (omitted) 22 | 0 (omitted) 23 | 0 (omitted) 24 | 0 (omitted) 25 | 0 (omitted) 26 | 0 (omitted) 27 | 0 (omitted) 28 | 0 (omitted) 29 | 0 (omitted) 30 | 0 (omitted) 31 | 0 (omitted) 32 | 0 (omitted) 33 | 0 (omitted) 34 | 0 (omitted) 35 | 0 (omitted) 36 | 0 (omitted) 37 | 0 (omitted) 38 | 0 (omitted) 39 | 0 (omitted) 40 | 0 (omitted) 42 | 0 (omitted) 44 | 0 (omitted) 45 | 0 (omitted) 47 | 0 (omitted) 48 | 0 (omitted) 49 | 0 (omitted) 50 | 0 (omitted) 51 | 0 (omitted) 52 | 0 (omitted) 53 | 0 (omitted) 54 | 0 (omitted) 55 | 0 (omitted) 56 | 0 (omitted) 57 | 0 (omitted) 58 | 0 (omitted) 59 | 0 (omitted) 60 | 0 (omitted) 61 | 0 (omitted) 62 | 0 (omitted) 63 | 0 (omitted) 64 | 0 (omitted) 67 | 0 (omitted) 70 | 0 (omitted) 72 | 0 (omitted) 73 | 0 (omitted) 75 | 0 (omitted) 78 | 0 (omitted) 79 | 0 (omitted) 80 | 0 (omitted) 82 | 0 (omitted) 83 | 0 (omitted) 87 | 0 (omitted) 99 | 0 (omitted) | _cons | -.0191775 .0036551 -5.25 0.000 -.0263505 -.0120045 ----------------------+---------------------------------------------------------------- sigma_u | .0848593 sigma_e | .19574748 rho | .15820274 (fraction of variance due to u_i) --------------------------------------------------------------------------------------- .
Code:
reg D_ROE_lead1_win c.UCOMP##i.POST D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d i.fyear, vce(r)
HTML Code:
. reg D_ROE_lead1_win c.UCOMP##i.POST D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d i.fyear, vce(r) note: 2005.fyear omitted because of collinearity Linear regression Number of obs = 4,387 F(69, 4317) = 6.76 Prob > F = 0.0000 R-squared = 0.1559 Root MSE = .18604 --------------------------------------------------------------------------------------- | Robust D_ROE_lead1_win | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- UCOMP | .0392188 .0124657 3.15 0.002 .0147797 .0636579 1.POST | .0662009 .0094289 7.02 0.000 .0477155 .0846863 | POST#c.UCOMP | 1 | -.028908 .0162057 -1.78 0.075 -.0606794 .0028634 | D_RET_win | .0384284 .006121 6.28 0.000 .0264281 .0504287 D_ROE_win | -.3370546 .0424834 -7.93 0.000 -.420344 -.2537652 D_logSALES_by2002_win | -.0193767 .0216582 -0.89 0.371 -.0618379 .0230845 | sic_Comp_2d | 10 | .2436253 .1580442 1.54 0.123 -.0662224 .553473 13 | .1139722 .0238269 4.78 0.000 .0672592 .1606853 14 | .1044493 .0233721 4.47 0.000 .0586279 .1502707 15 | .0847084 .0245002 3.46 0.001 .0366754 .1327414 16 | .0743151 .0263457 2.82 0.005 .0226641 .1259662 20 | .0680565 .0274059 2.48 0.013 .0143269 .1217862 21 | .0943653 .2404107 0.39 0.695 -.3769632 .5656938 22 | .1015676 .0380867 2.67 0.008 .026898 .1762371 23 | .0848705 .0238377 3.56 0.000 .0381364 .1316046 24 | .0723909 .0450312 1.61 0.108 -.0158935 .1606752 25 | .0419734 .040647 1.03 0.302 -.0377156 .1216624 26 | .0652542 .0317417 2.06 0.040 .0030242 .1274841 27 | .0824918 .0384155 2.15 0.032 .0071777 .1578059 28 | .0929376 .0261299 3.56 0.000 .0417096 .1441655 29 | .1157699 .0265928 4.35 0.000 .0636343 .1679054 30 | .0748228 .0489669 1.53 0.127 -.0211775 .170823 31 | .0885334 .0245154 3.61 0.000 .0404707 .1365961 32 | .0510022 .0456162 1.12 0.264 -.0384291 .1404334 33 | .1298256 .0300498 4.32 0.000 .0709125 .1887387 34 | .0865543 .024173 3.58 0.000 .0391627 .1339458 35 | .093948 .0247596 3.79 0.000 .0454064 .1424896 36 | .0741927 .024938 2.98 0.003 .0253014 .123084 37 | .0903146 .02693 3.35 0.001 .037518 .1431112 38 | .082673 .0245323 3.37 0.001 .034577 .130769 39 | .1010992 .0340923 2.97 0.003 .0342608 .1679377 40 | .084477 .0286971 2.94 0.003 .028216 .1407379 42 | .0976769 .0334222 2.92 0.003 .0321523 .1632015 44 | .1074021 .0249236 4.31 0.000 .058539 .1562651 45 | .1135235 .0319811 3.55 0.000 .0508241 .176223 47 | .0975938 .0288536 3.38 0.001 .041026 .1541616 48 | .0645261 .042979 1.50 0.133 -.0197348 .1487869 49 | .0887147 .0233845 3.79 0.000 .0428691 .1345602 50 | .1040087 .023811 4.37 0.000 .0573268 .1506906 51 | .0643401 .041928 1.53 0.125 -.0178603 .1465406 52 | .105319 .0247658 4.25 0.000 .0567653 .1538728 53 | .0968133 .0240522 4.03 0.000 .0496587 .1439679 54 | .1008545 .0456592 2.21 0.027 .011339 .19037 55 | .1098666 .0266982 4.12 0.000 .0575245 .1622087 56 | .0860991 .023642 3.64 0.000 .0397487 .1324496 57 | .0505561 .0381876 1.32 0.186 -.0243112 .1254234 58 | .0882977 .0239088 3.69 0.000 .041424 .1351713 59 | .0826475 .0255252 3.24 0.001 .0326051 .1326899 60 | .0884345 .0222855 3.97 0.000 .0447434 .1321257 61 | .1044897 .0305666 3.42 0.001 .0445634 .164416 62 | .0802998 .024233 3.31 0.001 .0327906 .127809 63 | .11781 .0232785 5.06 0.000 .0721722 .1634478 64 | .0675812 .0288246 2.34 0.019 .0110701 .1240922 67 | .1105102 .02418 4.57 0.000 .0631051 .1579153 70 | .0997014 .0240329 4.15 0.000 .0525846 .1468182 72 | .009463 .0574141 0.16 0.869 -.1030981 .1220241 73 | .1141819 .0250713 4.55 0.000 .0650292 .1633345 75 | .0222996 .0664288 0.34 0.737 -.107935 .1525343 78 | .0991467 .0343885 2.88 0.004 .0317275 .1665658 79 | .1238005 .0435254 2.84 0.004 .0384684 .2091326 80 | .0619407 .0309974 2.00 0.046 .00117 .1227115 82 | .1071629 .0286018 3.75 0.000 .0510887 .163237 83 | .0866183 .0333891 2.59 0.010 .0211584 .1520781 87 | .0763192 .027526 2.77 0.006 .022354 .1302843 99 | .1104999 .0311492 3.55 0.000 .0494316 .1715682 | fyear | 2001 | .0381889 .0109164 3.50 0.000 .016787 .0595907 2002 | .0922355 .0113675 8.11 0.000 .0699493 .1145216 2003 | .0217092 .0085836 2.53 0.011 .0048809 .0385374 2004 | .0221656 .0085377 2.60 0.009 .0054272 .038904 2005 | 0 (omitted) | _cons | -.1553799 .0222875 -6.97 0.000 -.1990748 -.1116849 --------------------------------------------------------------------------------------- .
Code:
pwcorr POST fyear, star(.01)
HTML Code:
. pwcorr POST fyear, star(.01) | POST fyear -------------+------------------ POST | 1.0000 fyear | 0.8764* 1.0000 .
Code:
reg POST UCOMP D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d i.fyear, vce(r)
HTML Code:
. reg POST UCOMP D_RET_win D_ROE_win D_logSALES_by2002_win i.sic_Comp_2d i.fyear, vce(r) Linear regression Number of obs = 4,387 F(0, 4318) = . Prob > F = . R-squared = 1.0000 Root MSE = 0 --------------------------------------------------------------------------------------- | Robust POST | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- UCOMP | 1.85e-16 2.73e-16 0.68 0.498 -3.51e-16 7.21e-16 D_RET_win | -6.49e-16 1.76e-16 -3.69 0.000 -9.94e-16 -3.04e-16 D_ROE_win | -7.83e-15 8.26e-16 -9.47 0.000 -9.45e-15 -6.21e-15 D_logSALES_by2002_win | 2.34e-15 5.26e-16 4.45 0.000 1.31e-15 3.37e-15 | sic_Comp_2d | 10 | -2.79e-13 1.94e-13 -1.44 0.151 -6.60e-13 1.02e-13 13 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 14 | -2.80e-13 1.94e-13 -1.44 0.149 -6.61e-13 1.01e-13 15 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 16 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 20 | -2.80e-13 1.94e-13 -1.44 0.149 -6.61e-13 1.01e-13 21 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 22 | -2.79e-13 1.94e-13 -1.43 0.152 -6.60e-13 1.02e-13 23 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 24 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 25 | -2.80e-13 1.94e-13 -1.44 0.149 -6.61e-13 1.01e-13 26 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 27 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 28 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 29 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 30 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 31 | -2.82e-13 1.94e-13 -1.45 0.147 -6.63e-13 9.94e-14 32 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 33 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 34 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 35 | -2.81e-13 1.94e-13 -1.45 0.148 -6.63e-13 9.97e-14 36 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 37 | -2.81e-13 1.94e-13 -1.45 0.148 -6.62e-13 1.00e-13 38 | -2.82e-13 1.94e-13 -1.45 0.147 -6.63e-13 9.95e-14 39 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 40 | -2.79e-13 1.94e-13 -1.44 0.151 -6.60e-13 1.02e-13 42 | -2.80e-13 1.94e-13 -1.44 0.149 -6.61e-13 1.01e-13 44 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 45 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 47 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 48 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 49 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 50 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 51 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 52 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 53 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 54 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 55 | -2.79e-13 1.94e-13 -1.44 0.151 -6.60e-13 1.02e-13 56 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 57 | -2.81e-13 1.94e-13 -1.45 0.148 -6.62e-13 1.00e-13 58 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 59 | -2.80e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 60 | -2.82e-13 1.94e-13 -1.45 0.147 -6.63e-13 9.95e-14 61 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 62 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 63 | -2.81e-13 1.94e-13 -1.45 0.148 -6.63e-13 9.96e-14 64 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.01e-13 67 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 70 | -2.81e-13 1.94e-13 -1.45 0.148 -6.62e-13 1.00e-13 72 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 73 | -2.81e-13 1.94e-13 -1.45 0.148 -6.62e-13 1.00e-13 75 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 78 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 79 | -2.78e-13 1.94e-13 -1.43 0.152 -6.59e-13 1.03e-13 80 | -2.80e-13 1.94e-13 -1.44 0.150 -6.61e-13 1.01e-13 82 | -2.81e-13 1.94e-13 -1.45 0.148 -6.62e-13 1.00e-13 83 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 87 | -2.81e-13 1.94e-13 -1.44 0.149 -6.62e-13 1.00e-13 99 | -2.79e-13 1.94e-13 -1.43 0.152 -6.60e-13 1.02e-13 | fyear | 2001 | 1.38e-14 5.47e-16 25.19 0.000 1.27e-14 1.48e-14 2002 | 1.48e-14 5.63e-16 26.35 0.000 1.37e-14 1.59e-14 2003 | 1 5.73e-16 1.7e+15 0.000 1 1 2004 | 1 5.54e-16 1.8e+15 0.000 1 1 2005 | 1 7.22e-16 1.4e+15 0.000 1 1 | _cons | 2.68e-13 1.94e-13 1.38 0.168 -1.13e-13 6.49e-13 --------------------------------------------------------------------------------------- .
I am afraid I have to show off extra ordinary levels of lacking Stata as well as general statistic literacy now, but: Is there anything I can do about this? If yes, what? Please, guide me through the steps. If no, – and this is obviously key to me – are the current results of any use or, well, just elaborate waste?
For your help I thank you very much in advance!
Best regards,
Roman
Comment