Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Observations completely determined

    I came across a lot of posts that faced a similar problem as mine. However, I still didn't find the exact answer I was looking for.

    I am running a MNLogit regression:
    Code:
    mlogit croptype_dummy mean_DRO elevmean elevrange naturalness  mean_HFO   pdnsty SE005 SE425 SE025 irrigation_dummy0  ts1 ts1sq ts2 ts2sq ts3 ts3sq ts4 ts4sq  ps1 ps1sq ps2 ps2sq ps3 ps3sq ps4 ps4sq   rentedland   gdpcap t_gravel t_silt t_sand t_ph_h2o  lat lon  subsidies1   [fweight=land], robust
    These are a lot of variables, but in total I have 12,800 observations so it should be fine.

    The "Note" that I receive is the following:
    Code:
    Note: 174057 observations completely determined.  Standard errors questionable.
    However, this warning message says that there are more observations than I have in my sample. I am assuming this is due to the fact that I use weights.

    Without weights, there are ""only""" 534 observations completely determined.

    In any case, it is clear that something is wrong. Ideally, I would like to examine those 534 observations that are completely determined. Is there a way to figure out which observations these are?

    Thanks a lot in advance!

    Code:
    Iteration 0:   log pseudolikelihood =  -720199.8  
    Iteration 1:   log pseudolikelihood = -511838.18  
    Iteration 2:   log pseudolikelihood = -399636.45  
    Iteration 3:   log pseudolikelihood = -339029.07  
    Iteration 4:   log pseudolikelihood = -286488.06  
    Iteration 5:   log pseudolikelihood = -268131.02  
    Iteration 6:   log pseudolikelihood = -258566.26  
    Iteration 7:   log pseudolikelihood = -255407.41  
    Iteration 8:   log pseudolikelihood = -254630.09  
    Iteration 9:   log pseudolikelihood = -254592.04  
    Iteration 10:  log pseudolikelihood = -254591.86  
    Iteration 11:  log pseudolikelihood = -254591.86  
    
    Multinomial logistic regression                 Number of obs     =    894,740
                                                    Wald chi2(105)    =  202031.19
                                                    Prob > chi2       =     0.0000
    Log pseudolikelihood = -254591.86               Pseudo R2         =     0.6465
    
    ----------------------------------------------------------------------------------
                     |               Robust
      croptype_dummy |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -----------------+----------------------------------------------------------------
    2                |
            mean_DRO |   .0190114   .0018295    10.39   0.000     .0154256    .0225972
            elevmean |  -3.878067   .1058287   -36.64   0.000    -4.085488   -3.670647
           elevrange |    .150083   .0198067     7.58   0.000     .1112626    .1889033
         naturalness |   1.993495   .0353167    56.45   0.000     1.924275    2.062714
            mean_HFO |  -.0142505    .002723    -5.23   0.000    -.0195874   -.0089135
              pdnsty |   .9211858   .0405922    22.69   0.000     .8416265    1.000745
               SE005 |   34.32297   .1926833   178.13   0.000     33.94532    34.70062
               SE425 |  -.0077633   .0003862   -20.10   0.000    -.0085202   -.0070063
               SE025 |  -.0629448   .0003565  -176.57   0.000    -.0636435   -.0622461
    irrigation_du~y0 |   1.424357   .0195388    72.90   0.000     1.386062    1.462652
                 ts1 |   .4414631   .0389151    11.34   0.000     .3651909    .5177352
               ts1sq |  -.0203034   .0031534    -6.44   0.000    -.0264841   -.0141228
                 ts2 |  -.9033541   .0910221    -9.92   0.000    -1.081754   -.7249541
               ts2sq |  -.0029859   .0045208    -0.66   0.509    -.0118465    .0058747
                 ts3 |  -.8920773   .1350362    -6.61   0.000    -1.156743   -.6274113
               ts3sq |     .02114   .0035085     6.03   0.000     .0142635    .0280166
                 ts4 |  -.3709673   .1376005    -2.70   0.007    -.6406593   -.1012752
               ts4sq |   .0268379   .0051513     5.21   0.000     .0167417    .0369342
                 ps1 |  -1.940215    .034915   -55.57   0.000    -2.008647   -1.871783
               ps1sq |   .0946409   .0018467    51.25   0.000     .0910214    .0982603
                 ps2 |   .5586826   .0746853     7.48   0.000     .4123022     .705063
               ps2sq |  -.0433847    .004466    -9.71   0.000    -.0521379   -.0346315
                 ps3 |  -.4181258   .0423171    -9.88   0.000    -.5010657   -.3351858
               ps3sq |   .0328159   .0020096    16.33   0.000      .028877    .0367547
                 ps4 |   .8771014   .0424684    20.65   0.000     .7938648     .960338
               ps4sq |  -.0539718   .0025632   -21.06   0.000    -.0589957   -.0489479
          rentedland |  -.8017062   .0263296   -30.45   0.000    -.8533113   -.7501012
              gdpcap |   .0106112   .0014131     7.51   0.000     .0078416    .0133808
            t_gravel |  -.2634573    .005928   -44.44   0.000    -.2750759   -.2518387
              t_silt |   .0970622   .0035782    27.13   0.000      .090049    .1040755
              t_sand |   .0287123   .0023261    12.34   0.000     .0241533    .0332713
            t_ph_h2o |   .0871085   .0270917     3.22   0.001     .0340098    .1402073
                 lat |  -.3463195   .0115571   -29.97   0.000    -.3689711    -.323668
                 lon |   .0037603   .0027734     1.36   0.175    -.0016755    .0091961
          subsidies1 |   .8798013    .025646    34.31   0.000     .8295362    .9300665
               _cons |    23.4252   1.081689    21.66   0.000     21.30513    25.54527
    -----------------+----------------------------------------------------------------
    3                |
            mean_DRO |   .0325762   .0014126    23.06   0.000     .0298076    .0353449
            elevmean |  -2.287876   .1015219   -22.54   0.000    -2.486855   -2.088897
           elevrange |  -.8220184   .0166973   -49.23   0.000    -.8547446   -.7892923
         naturalness |   1.451338   .0293013    49.53   0.000     1.393909    1.508768
            mean_HFO |  -.0550362    .002169   -25.37   0.000    -.0592873   -.0507852
              pdnsty |   .3972764   .0347746    11.42   0.000     .3291194    .4654335
               SE005 |   34.18779   .1916273   178.41   0.000     33.81221    34.56337
               SE425 |   .0033927   .0001233    27.52   0.000     .0031511    .0036343
               SE025 |  -.0566438   .0003257  -173.93   0.000    -.0572822   -.0560055
    irrigation_du~y0 |   1.627022   .0173354    93.86   0.000     1.593045    1.660999
                 ts1 |  -.6976467   .0288475   -24.18   0.000    -.7541868   -.6411066
               ts1sq |     .06174   .0018054    34.20   0.000     .0582015    .0652785
                 ts2 |   1.071005   .0715424    14.97   0.000      .930784    1.211225
               ts2sq |  -.1327408   .0038482   -34.49   0.000    -.1402831   -.1251984
                 ts3 |  -5.660249   .0978786   -57.83   0.000    -5.852088   -5.468411
               ts3sq |   .1625688   .0024185    67.22   0.000     .1578287     .167309
                 ts4 |   2.693855   .0992124    27.15   0.000     2.499402    2.888308
               ts4sq |  -.0785121   .0037492   -20.94   0.000    -.0858603   -.0711639
                 ps1 |  -1.300247   .0306413   -42.43   0.000    -1.360303   -1.240191
               ps1sq |   .0783001   .0017888    43.77   0.000     .0747941    .0818061
                 ps2 |   2.334851   .0706095    33.07   0.000     2.196459    2.473243
               ps2sq |  -.1832527   .0047486   -38.59   0.000    -.1925597   -.1739457
                 ps3 |  -.7822601   .0362545   -21.58   0.000    -.8533176   -.7112025
               ps3sq |   .0409215   .0019159    21.36   0.000     .0371665    .0446765
                 ps4 |  -.5449703   .0334276   -16.30   0.000    -.6104873   -.4794533
               ps4sq |   .0353429   .0019948    17.72   0.000     .0314332    .0392526
          rentedland |   1.001006    .020326    49.25   0.000     .9611675    1.040844
              gdpcap |   .0363596   .0011567    31.43   0.000     .0340925    .0386267
            t_gravel |  -.0695202   .0049207   -14.13   0.000    -.0791645   -.0598758
              t_silt |   .0917565    .003038    30.20   0.000     .0858022    .0977109
              t_sand |   .1015854   .0018848    53.90   0.000     .0978912    .1052796
            t_ph_h2o |   .6078819   .0212503    28.61   0.000      .566232    .6495319
                 lat |  -.2060046   .0109167   -18.87   0.000    -.2274009   -.1846083
                 lon |  -.0232922   .0021246   -10.96   0.000    -.0274563   -.0191281
          subsidies1 |   1.349989   .0228129    59.18   0.000     1.305277    1.394702
               _cons |   22.60974   1.034219    21.86   0.000      20.5827    24.63677
    -----------------+----------------------------------------------------------------
    5                |
            mean_DRO |   -.020908   .0019059   -10.97   0.000    -.0246436   -.0171725
            elevmean |  -1.388079   .0895233   -15.51   0.000    -1.563541   -1.212616
           elevrange |  -.3699196   .0134193   -27.57   0.000    -.3962209   -.3436183
         naturalness |   .2288814   .0294597     7.77   0.000     .1711415    .2866214
            mean_HFO |  -.1361742   .0022704   -59.98   0.000    -.1406242   -.1317242
              pdnsty |  -.6701923    .043301   -15.48   0.000    -.7550606   -.5853239
               SE005 |   33.10582   .1930321   171.50   0.000     32.72748    33.48416
               SE425 |  -.0019956   .0001718   -11.62   0.000    -.0023324   -.0016589
               SE025 |  -.0535544   .0003305  -162.06   0.000    -.0542021   -.0529067
    irrigation_du~y0 |  -1.337171   .0164423   -81.33   0.000    -1.369397   -1.304945
                 ts1 |   .9485747   .0289214    32.80   0.000     .8918899    1.005259
               ts1sq |   .1267372   .0021115    60.02   0.000     .1225988    .1308755
                 ts2 |   4.922767   .1033373    47.64   0.000     4.720229    5.125304
               ts2sq |  -.1778646    .005197   -34.22   0.000    -.1880505   -.1676787
                 ts3 |  -2.451771   .0985995   -24.87   0.000    -2.645022   -2.258519
               ts3sq |   .1055752   .0023235    45.44   0.000     .1010212    .1101291
                 ts4 |  -3.663043    .116101   -31.55   0.000    -3.890597   -3.435489
               ts4sq |  -.0629105   .0046134   -13.64   0.000    -.0719525   -.0538685
                 ps1 |  -.5426029   .0287091   -18.90   0.000    -.5988716   -.4863341
               ps1sq |    .015288   .0015217    10.05   0.000     .0123056    .0182705
                 ps2 |  -1.435326   .0609773   -23.54   0.000    -1.554839   -1.315813
               ps2sq |   .1374548   .0033183    41.42   0.000      .130951    .1439587
                 ps3 |   .4154882   .0361699    11.49   0.000     .3445965    .4863799
               ps3sq |  -.0552709   .0019157   -28.85   0.000    -.0590256   -.0515163
                 ps4 |   1.369163   .0331446    41.31   0.000       1.3042    1.434125
               ps4sq |  -.0666496   .0018868   -35.32   0.000    -.0703477   -.0629516
          rentedland |  -.4546961   .0201763   -22.54   0.000     -.494241   -.4151512
              gdpcap |   .0298129   .0013739    21.70   0.000     .0271201    .0325057
            t_gravel |   -.032882   .0053869    -6.10   0.000    -.0434402   -.0223239
              t_silt |   .1168384   .0031453    37.15   0.000     .1106738    .1230029
              t_sand |   .0605906     .00205    29.56   0.000     .0565727    .0646085
            t_ph_h2o |   .3102023   .0206419    15.03   0.000      .269745    .3506596
                 lat |  -.8060968   .0104488   -77.15   0.000    -.8265762   -.7856175
                 lon |    .021756   .0025356     8.58   0.000     .0167864    .0267256
          subsidies1 |  -.6419808   .0362229   -17.72   0.000    -.7129764   -.5709851
               _cons |   53.05945   1.140427    46.53   0.000     50.82426    55.29465
    -----------------+----------------------------------------------------------------
    7                |  (base outcome)
    ----------------------------------------------------------------------------------
    Note: 174057 observations completely determined.  Standard errors questionable.
    
    .

  • #2
    Hello Janka,

    I wonder whether this FAQ explanation would apply to your needs.

    Best regards,

    Marcos

    Comment


    • #3
      Thanks for your reply and sorry for my late reply. I am still a little confused by this issue and I need some time to figure it further out. The link you posted I already knew but I was a good reminder.

      Comment

      Working...
      X