Hello all,
I am estimating logistic multilevel models (patients in hospitals) using the meqrlogit command. I am mainly interested in how skincolor affects the probability of recieveing a certain treatment.
So generally my basic syntax looks like this:
meqrlogit treatment skincolor controlvarlevel1 controlvarlevel2 || hospitals:
I have no problem estimating my models, however the coefficient for the skincolor looks a bit odd and differs considerably from the effect thatl I get when estimating the same model with clustered standard errors (logit treatment skincolor controlvarlevel1 controlvarlevel2, vce(cluster hospitals). In the multilevel model, the effect of skincolor is more than twice as big as the effect in the model with clustered standard errors (example output at the bottom of the post). Moreover I have estimated a linear probability model (mixed treatment skincolor controlvarlevel1 controlvarlevel2 || hospitals: ) and the effect of skincolor here is comparable to the (marginal) effect in the model with clustered standard errors.
So I assumed that the coefficient in the logistic multilevel model is a bit off. My question now is wether this "inflated" coefficient might be due to to the rescaling of the variance on the lowest level in logistic models (to 3.29). If the differences between patients would be whats most relevant for recieving the treatment, the variance on the lowest level should be comparatively large; if this variance then gets rescaled to 3.29, could this lead to larger coefficients instead? And if (not) so, is there a (good) way to deal with this?
Thank you,
Katharina
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
example logistic multilevel
meqrlogit treatment i.skincolor || hospital:
Refining starting values:
Iteration 0: log likelihood = -875.10667
Iteration 1: log likelihood = -753.56783
Performing gradient-based optimization:
Iteration 0: log likelihood = -748.07931
Iteration 1: log likelihood = -746.49785
Mixed-effects logistic regression Number of obs = 8005
Group variable: hospital Number of groups = 721
Integration points = 7 Wald chi2(2) = 20.24
Log likelihood = -746.48846 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.025434 .2384883 -0.11 0.915 -.4928625 .4419945
darker skin | -.9323545 .2362081 -3.95 0.000 -1.395314 -.4693951
_cons | 3.527563 .2945631 11.98 0.000 2.95023 4.104896
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hospital: Identity |
var(_cons) | 14.11532 1.947717 10.77052 18.49885
------------------------------------------------------------------------------
LR test vs. logistic regression: chibar2(01) = 456.45 Prob>=chibar2 = 0.0000
example clustered model
logit treatment i.skincolor, vce(cluster hospital)
Iteration 0: log pseudolikelihood = -980.03726
Iteration 1: log pseudolikelihood = -974.73265
Logistic regression Number of obs = 8005
Log pseudolikelihood = -974.71422 Pseudo R2 = 0.0054
------------------------------------------------------------------------------
| Robust
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0200408 .103726 -0.19 0.847 -.22334 .1832585
darker skin | -.3890346 .089785 -4.33 0.000 -.5650099 -.2130592
|
_cons | 1.386294 .1024637 13.53 0.000 1.185469 1.58712
------------------------------------------------------------------------------
margins, dydx(*)
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0032258 .0166943 -0.19 0.847 -.0359461 .0294944
darker skin | -.0694805 .0158784 -4.38 0.000 -.1006016 -.0383595
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
example linear probability model
mixed treatment i.skincolor || hospital:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -653.34893
Iteration 1: log likelihood = -653.34893
Computing standard errors:
Mixed-effects ML regression Number of obs = 8005
Group variable: hospital Number of groups = 721
Log likelihood = -653.34893 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0017033 .0148745 -0.11 0.909 -.0308568 .0274502
darker skin | -.0619637 .014662 -4.23 0.000 -.0907006 -.0332267
|
_cons | .79759 .0163144 48.89 0.000 .7656144 .8295657
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hospital: Identity |
var(_cons) | .1120834 .0073523 .098561 .1274611
-----------------------------+------------------------------------------------
var(Residual) | .0611654 .0025791 .0563136 .0664351
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) = 687.67 Prob >= chibar2 = 0.00
I am estimating logistic multilevel models (patients in hospitals) using the meqrlogit command. I am mainly interested in how skincolor affects the probability of recieveing a certain treatment.
So generally my basic syntax looks like this:
meqrlogit treatment skincolor controlvarlevel1 controlvarlevel2 || hospitals:
I have no problem estimating my models, however the coefficient for the skincolor looks a bit odd and differs considerably from the effect thatl I get when estimating the same model with clustered standard errors (logit treatment skincolor controlvarlevel1 controlvarlevel2, vce(cluster hospitals). In the multilevel model, the effect of skincolor is more than twice as big as the effect in the model with clustered standard errors (example output at the bottom of the post). Moreover I have estimated a linear probability model (mixed treatment skincolor controlvarlevel1 controlvarlevel2 || hospitals: ) and the effect of skincolor here is comparable to the (marginal) effect in the model with clustered standard errors.
So I assumed that the coefficient in the logistic multilevel model is a bit off. My question now is wether this "inflated" coefficient might be due to to the rescaling of the variance on the lowest level in logistic models (to 3.29). If the differences between patients would be whats most relevant for recieving the treatment, the variance on the lowest level should be comparatively large; if this variance then gets rescaled to 3.29, could this lead to larger coefficients instead? And if (not) so, is there a (good) way to deal with this?
Thank you,
Katharina
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
example logistic multilevel
meqrlogit treatment i.skincolor || hospital:
Refining starting values:
Iteration 0: log likelihood = -875.10667
Iteration 1: log likelihood = -753.56783
Performing gradient-based optimization:
Iteration 0: log likelihood = -748.07931
Iteration 1: log likelihood = -746.49785
Mixed-effects logistic regression Number of obs = 8005
Group variable: hospital Number of groups = 721
Integration points = 7 Wald chi2(2) = 20.24
Log likelihood = -746.48846 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.025434 .2384883 -0.11 0.915 -.4928625 .4419945
darker skin | -.9323545 .2362081 -3.95 0.000 -1.395314 -.4693951
_cons | 3.527563 .2945631 11.98 0.000 2.95023 4.104896
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hospital: Identity |
var(_cons) | 14.11532 1.947717 10.77052 18.49885
------------------------------------------------------------------------------
LR test vs. logistic regression: chibar2(01) = 456.45 Prob>=chibar2 = 0.0000
example clustered model
logit treatment i.skincolor, vce(cluster hospital)
Iteration 0: log pseudolikelihood = -980.03726
Iteration 1: log pseudolikelihood = -974.73265
Logistic regression Number of obs = 8005
Log pseudolikelihood = -974.71422 Pseudo R2 = 0.0054
------------------------------------------------------------------------------
| Robust
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0200408 .103726 -0.19 0.847 -.22334 .1832585
darker skin | -.3890346 .089785 -4.33 0.000 -.5650099 -.2130592
|
_cons | 1.386294 .1024637 13.53 0.000 1.185469 1.58712
------------------------------------------------------------------------------
margins, dydx(*)
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0032258 .0166943 -0.19 0.847 -.0359461 .0294944
darker skin | -.0694805 .0158784 -4.38 0.000 -.1006016 -.0383595
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
example linear probability model
mixed treatment i.skincolor || hospital:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -653.34893
Iteration 1: log likelihood = -653.34893
Computing standard errors:
Mixed-effects ML regression Number of obs = 8005
Group variable: hospital Number of groups = 721
Log likelihood = -653.34893 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
treatment | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
skincolor |
medium skin | -.0017033 .0148745 -0.11 0.909 -.0308568 .0274502
darker skin | -.0619637 .014662 -4.23 0.000 -.0907006 -.0332267
|
_cons | .79759 .0163144 48.89 0.000 .7656144 .8295657
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
hospital: Identity |
var(_cons) | .1120834 .0073523 .098561 .1274611
-----------------------------+------------------------------------------------
var(Residual) | .0611654 .0025791 .0563136 .0664351
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) = 687.67 Prob >= chibar2 = 0.00
Comment