Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • hausman (not positive definite)

    Dear Statalist-users,

    I need your help. here is the model I use on stata to measure the effect of ESG (Environnmental, Social, Governance) performance on qtobin (performance):
    I have an unbalanced panel with large N, small T.

    I am trying to choose between RE and FE model however when I conduct an hausman test, the following appear : (V_b-V_B is not positive definite)
    Also i downloaded the module xtoverid to account for heteroskedasticty and autocoreelation (source : Mark Schaffer) however it does not work after : "xtreg, re vce(cluster panel id)"
    I read some of the post that advised to use hausman with sigmamore and sigmaless however the result are different from the original hausman test, which one should I use please ?


    1 attempt with hausman test :
    xtreg qtobin esg levier tventes logassets i.year, fe
    estimates store fixed
    xtreg qtobin esg levier tventes logassets i.year, re
    estimates store random
    hausman fixed random
    chi2(17) = (b-B)'[(V_b-V_B)^(-1)](b-B)
    = 8.81
    Prob>chi2 = 0.9461
    (V_b-V_B is not positive definite)



    2 attempt with hausman test and sigmamore:
    xtreg qtobin esg levier tventes logassets i.year, fe
    estimates store fixed
    xtreg qtobin esg levier tventes logassets i.year, re
    estimates store random
    hausman fixed random, sigmamore
    Test: Ho: difference in coefficients not systematic
    chi2(17) = (b-B)'[(V_b-V_B)^(-1)](b-B)
    = 94.27
    Prob>chi2 = 0.0000


    3 attempt with hausman test and sigmaless:
    xtreg qtobin esg levier tventes logassets i.year, fe
    estimates store fixed
    xtreg qtobin esg levier tventes logassets i.year, re
    estimates store random
    hausman fixed random, sigmaless
    Test: Ho: difference in coefficients not systematic
    chi2(17) = (b-B)'[(V_b-V_B)^(-1)](b-B)
    = 94.99
    Prob>chi2 = 0.0000



    4 attempt with xtoverid:
    . xtreg qtobin esg levier tventes logassets i.year, re vce(cluster companynum)

    Random-effects GLS regression Number of obs = 8,729
    Group variable: companynum Number of groups = 871

    R-sq: Obs per group:
    within = 0.1687 min = 2
    between = 0.2265 avg = 10.0
    overall = 0.2046 max = 14

    Wald chi2(17) = 778.44
    corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

    (Std. Err. adjusted for 871 clusters in companynum)
    ------------------------------------------------------------------------------
    | Robust
    qtobin | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    esg | .0040501 .0008212 4.93 0.000 .0024407 .0056596
    levier | -.0001237 .0025782 -0.05 0.962 -.0051768 .0049295
    tventes | -.0002569 .0000141 -18.16 0.000 -.0002846 -.0002291
    logassets | -.5623834 .0389293 -14.45 0.000 -.6386835 -.4860833
    |
    year |
    2003 | .2826151 .0543909 5.20 0.000 .1760109 .3892194
    2004 | .1633955 .0536977 3.04 0.002 .0581498 .2686411
    2005 | .2557374 .0535302 4.78 0.000 .1508202 .3606546
    2006 | .3497602 .0573786 6.10 0.000 .2373002 .4622202
    2007 | .455518 .0602367 7.56 0.000 .3374563 .5735796
    2008 | -.1981683 .0537734 -3.69 0.000 -.3035623 -.0927743
    2009 | -.0686121 .0555378 -1.24 0.217 -.1774641 .0402399
    2010 | -.0442643 .0587347 -0.75 0.451 -.1593821 .0708535
    2011 | -.0372261 .0591157 -0.63 0.529 -.1530907 .0786386
    2012 | .0322761 .058474 0.55 0.581 -.0823308 .1468831
    2013 | .2631256 .0613331 4.29 0.000 .1429149 .3833363
    2014 | .2181927 .0608679 3.58 0.000 .0988937 .3374917
    2015 | .2377145 .0656265 3.62 0.000 .1090889 .3663401
    |
    _cons | 10.23278 .6051246 16.91 0.000 9.046753 11.4188
    -------------+----------------------------------------------------------------
    sigma_u | 1.048925
    sigma_e | .61969319
    rho | .74127255 (fraction of variance due to u_i)
    ------------------------------------------------------------------------------

    . xtoverid
    2002b: operator invalid
    r(198);


    Thanks again for your time

  • #2
    Please see my comment in another Statalist topic about the hausman test after fixed-/random-effects models with time dummies:
    Hausman Procedure with Year Dummies
    https://www.kripfganz.de/stata/

    Comment


    • #3
      Dear Sebastian,

      Thanks for your reply. I tried to follow your advice and The Mundlak approach from http://blog.stata.com/2015/10/29/fix...dlak-approach/

      egen esgbar = mean(esg), by(companynum)
      egen levierbar = mean(levier), by(companynum)
      egen tventesbar = mean(tventes), by(companynum)
      egen logassetsbar = mean(logassets), by(companynum)
      xtreg qtobin esg levier tventes logassets esgbar levierbar tventesbar logassetsbar i.year, re vce(cluster companynum)
      estimates store mundlak
      testparm esgbar levierbar tventesbar logassetsbar
      chi2( 4) = 17.92
      Prob > chi2 = 0.0013


      I follow the conclusion from http://blog.stata.com/2015/10/29/fix...dlak-approach/
      I reject the null hypothesis. This suggests that time-invariant unobservables are related to the regressors and that the fixed-effects model is appropriate. With robust estimator of the variance-covariance matrix than controls for heteroskedasticity and autocorrelation

      Does it mean Fe is the best choice over RE ?
      Thanks again for your time and patience

      best regards,
      nassim ouali

      Comment


      • #4
        I also just managed to perform the "xtoverid" module (from Mark Schaffer) I get the following :

        . xtreg qtobin esg levier tventes logassets, re vce(cluster companynum)
        . xtoverid

        Test of overidentifying restrictions: fixed vs random effects
        Cross-section time-series model: xtreg re robust cluster(companynum)
        Sargan-Hansen statistic 34.279 Chi-sq(4) P-value = 0.0000

        This also means that RE is inconsistent and it also controls for HAC. However it does not account for time dummy variables. Does it mean the Mundlak approach is the best method to use in my case ? Thanks again for your time and patience.
        best regards,
        nassim ouali

        Comment


        • #5
          Nassim:
          -hausman, sigmamore- and -xtoverid- outcomes point you to -fe- specification.
          See also: http://www.stata.com/statalist/archi.../msg01069.html
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Thanks a lot Sebastian and Carlo for your help and reply. This really helped me.

            Best regards,

            nassim

            Comment

            Working...
            X