I am working on a panel of 59 banks picked from 12 countries. My time period spans from 2009 till 2015. My objective is to figure out which determinants impact profit of banks. My dependent variable is therefore profit which takes the abbreviation 'nim' in my commands which I have pasted below. All other variables are explanatory variables. Country names represent country dummies.
I now need to perform 'Least Square Dummy Variables (LSDV) ' on this panel data. I have learnt from various textbooks that 'LSDV' is the other name for 'fixed effect estimation'. I need to know which of the following three commands performs LSDV in my panel data.
Command # 1:
Command # 2:
Command # 3:
Problem with the first command is that iy is omitting my country dummies. I don't want this to happen. I need to know their sign and significance.
Confusion with the second command is that it uses xtreg plus it doesn't use -fe- option.
I read LSDV is simply OLS applied on model that includes country dummies. So, is -xtreg- the right command or is the 3rd command that uses -reg- correct?'
Please reply! Which among these three commands actually perform LSDV in my model?
I now need to perform 'Least Square Dummy Variables (LSDV) ' on this panel data. I have learnt from various textbooks that 'LSDV' is the other name for 'fixed effect estimation'. I need to know which of the following three commands performs LSDV in my panel data.
Command # 1:
Code:
. xtreg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya M > alaysia Egypt Philippines China Turkey Thailand,fe note: Nigeria omitted because of collinearity note: SriLanka omitted because of collinearity note: Bangladesh omitted because of collinearity note: India omitted because of collinearity note: Malaysia omitted because of collinearity note: Egypt omitted because of collinearity note: Philippines omitted because of collinearity note: China omitted because of collinearity note: Turkey omitted because of collinearity Fixed-effects (within) regression Number of obs = 413 Group variable: id Number of groups = 59 R-sq: within = 0.3481 Obs per group: min = 7 between = 0.1971 avg = 7.0 overall = 0.2147 max = 7 F(14,340) = 12.97 corr(u_i, Xb) = -0.0951 Prob > F = 0.0000 ------------------------------------------------------------------------------ nim | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- nir | .0163953 .011685 1.40 0.161 -.0065888 .0393794 cr | .0016437 .0009959 1.65 0.100 -.0003151 .0036026 lta | -1.106441 .3945453 -2.80 0.005 -1.882498 -.3303838 otoi | -.0455696 .0052323 -8.71 0.000 -.0558613 -.0352779 nlta | -.0029255 .0072428 -0.40 0.687 -.0171718 .0113208 ooiti | -.0466676 .0053673 -8.69 0.000 -.0572249 -.0361104 eata | -.0176386 .0077747 -2.27 0.024 -.0329313 -.002346 car | .0168051 .0165491 1.02 0.311 -.0157464 .0493566 bm | .0007851 .0075308 0.10 0.917 -.0140277 .0155978 inf | .0199149 .0167545 1.19 0.235 -.0130407 .0528705 pcgg | -.0425883 .0169323 -2.52 0.012 -.0758936 -.0092829 cpi | -.0125125 .0130406 -0.96 0.338 -.038163 .0131379 Nigeria | 0 (omitted) SriLanka | 0 (omitted) Bangladesh | 0 (omitted) India | 0 (omitted) Kenya | .9214237 .7084233 1.30 0.194 -.4720206 2.314868 Malaysia | 0 (omitted) Egypt | 0 (omitted) Philippines | 0 (omitted) China | 0 (omitted) Turkey | 0 (omitted) Thailand | -.8381735 .6967971 -1.20 0.230 -2.20875 .5324025 _cons | 14.05015 1.784493 7.87 0.000 10.54011 17.56019 -------------+---------------------------------------------------------------- sigma_u | 1.7229017 sigma_e | .63462076 rho | .88053173 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(58, 340) = 23.04 Prob > F = 0.0000 .
Code:
. xtreg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya M > alaysia Egypt Philippines China Turkey Thailand Random-effects GLS regression Number of obs = 413 Group variable: id Number of groups = 59 R-sq: within = 0.3348 Obs per group: min = 7 between = 0.7206 avg = 7.0 overall = 0.6728 max = 7 Wald chi2(23) = 334.94 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ nim | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- nir | .0187304 .0115449 1.62 0.105 -.0038972 .041358 cr | .0012113 .0009953 1.22 0.224 -.0007396 .0031621 lta | -.7070863 .2783553 -2.54 0.011 -1.252653 -.1615198 otoi | -.0395627 .0050475 -7.84 0.000 -.0494556 -.0296698 nlta | .002645 .0070117 0.38 0.706 -.0110978 .0163877 ooiti | -.0439643 .0053437 -8.23 0.000 -.0544377 -.0334908 eata | -.0217432 .0078519 -2.77 0.006 -.0371326 -.0063538 car | .0230583 .0161679 1.43 0.154 -.0086302 .0547468 bm | .0044242 .0077166 0.57 0.566 -.0107001 .0195485 inf | .0221639 .0171058 1.30 0.195 -.0113628 .0556907 pcgg | -.0461017 .0175316 -2.63 0.009 -.080463 -.0117403 cpi | -.021785 .0121113 -1.80 0.072 -.0455228 .0019527 Nigeria | 3.033168 .5995214 5.06 0.000 1.858128 4.208208 SriLanka | .2917484 .5777481 0.50 0.614 -.8406169 1.424114 Bangladesh | .2904912 .5843622 0.50 0.619 -.8548377 1.43582 India | -.5742879 .5308723 -1.08 0.279 -1.614779 .4662027 Kenya | 2.126572 .5044502 4.22 0.000 1.137868 3.115277 Malaysia | -2.424813 .6493439 -3.73 0.000 -3.697504 -1.152122 Egypt | -1.831614 .6096875 -3.00 0.003 -3.02658 -.6366488 Philippines | -.6361527 .466915 -1.36 0.173 -1.551289 .2789839 China | -1.47036 .8933924 -1.65 0.100 -3.221377 .2806571 Turkey | 1.160753 .6421596 1.81 0.071 -.0978566 2.419363 Thailand | -.3987376 .6466344 -0.62 0.537 -1.666118 .8686425 _cons | 12.48027 1.468979 8.50 0.000 9.601125 15.35942 -------------+---------------------------------------------------------------- sigma_u | .87351738 sigma_e | .63462076 rho | .65452757 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Command # 3:
Code:
reg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya Mal > aysia Egypt Philippines China Turkey Thailand Source | SS df MS Number of obs = 413 -------------+------------------------------ F( 23, 389) = 43.16 Model | 1217.92882 23 52.9534271 Prob > F = 0.0000 Residual | 477.245929 389 1.22685329 R-squared = 0.7185 -------------+------------------------------ Adj R-squared = 0.7018 Total | 1695.17475 412 4.11450183 Root MSE = 1.1076 ------------------------------------------------------------------------------ nim | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- nir | .0244971 .0138858 1.76 0.078 -.0028035 .0517976 cr | -.0002709 .0012601 -0.22 0.830 -.0027484 .0022066 lta | .0197848 .1800724 0.11 0.913 -.3342522 .3738218 otoi | -.0175484 .0053328 -3.29 0.001 -.028033 -.0070637 nlta | .0225154 .0078639 2.86 0.004 .0070543 .0379764 ooiti | -.0438234 .0069521 -6.30 0.000 -.0574918 -.0301551 eata | -.0503858 .0111521 -4.52 0.000 -.0723117 -.0284598 car | .0722298 .0180023 4.01 0.000 .0368357 .1076239 bm | .0161238 .0127652 1.26 0.207 -.0089736 .0412211 inf | .0175698 .0278604 0.63 0.529 -.0372059 .0723456 pcgg | -.0524609 .0293188 -1.79 0.074 -.110104 .0051822 cpi | -.0428361 .0180001 -2.38 0.018 -.0782257 -.0074465 Nigeria | 2.65039 .3263086 8.12 0.000 2.008841 3.291939 SriLanka | .8536365 .3892656 2.19 0.029 .0883088 1.618964 Bangladesh | .8205079 .3720648 2.21 0.028 .0889982 1.552018 India | -.3762995 .3591384 -1.05 0.295 -1.082395 .3297957 Kenya | 2.897395 .3746782 7.73 0.000 2.160747 3.634043 Malaysia | -2.140142 .4942142 -4.33 0.000 -3.111807 -1.168477 Egypt | -.9467589 .311581 -3.04 0.003 -1.559352 -.3341653 Philippines | -.3202755 .2946155 -1.09 0.278 -.8995135 .2589625 China | -1.556073 .5554704 -2.80 0.005 -2.648172 -.4639728 Turkey | 1.475286 .4628376 3.19 0.002 .5653102 2.385263 Thailand | -1.002632 .4558766 -2.20 0.028 -1.898923 -.1063418 _cons | 9.64989 1.527788 6.32 0.000 6.646134 12.65365 ------------------------------------------------------------------------------ .
Confusion with the second command is that it uses xtreg plus it doesn't use -fe- option.
I read LSDV is simply OLS applied on model that includes country dummies. So, is -xtreg- the right command or is the 3rd command that uses -reg- correct?'
Please reply! Which among these three commands actually perform LSDV in my model?
Comment