Hi all
I am trying to analyse cross-sectional data for mortality in a group of individuals.
The 4 variables are:
- Sex [sex2]
- Age grouped into 3 separate 15 year bands [age_grp3]
- HIV status (positive/negative) [hiv_bin]
- Year of admission (2011-2015) [adm_yr2]
Other variables:
- Unique patient identification number [pat_id]
I have been asked to report on interaction between HIV status and year of admission in the model, so have used a random effect logistic model for correlated data for repeated admissions by patients:
xtlogit mort i.sex2 i.age_grp3 i.hiv_bin##i.adm_yr2, i(pat_id) re or
Below is the output I get.
----------------------------------------------------------------------------------------
mort | OR Std. Err. z P>|z| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
1.sex2 | 1.107274 .088486 1.28 0.202 .9467441 1.295023
|
age_grp3 |
2 | 1.313543 .1279757 2.80 0.005 1.085209 1.589919
3 | 1.82075 .2034601 5.36 0.000 1.462624 2.266564
|
1.hiv_bin | 2.224567 .875704 2.03 0.042 1.028416 4.811962
|
adm_yr2 |
2012 | 2.147864 .9851916 1.67 0.096 .8741255 5.277638
2013 | 1.14683 .5800134 0.27 0.786 .4255995 3.090276
2014 | 1.086201 .5485696 0.16 0.870 .4036674 2.922785
2015 | 3.305442 1.875963 2.11 0.035 1.086778 10.05353
|
hiv_bin#adm_yr2 |
1 2012 | .5969703 .283122 -1.09 0.277 .2356448 1.512334
1 2013 | .9695291 .5051271 -0.06 0.953 .3492068 2.691777
1 2014 | .7680384 .4005921 -0.51 0.613 .2763216 2.13477
1 2015 | .2254525 .1319827 -2.54 0.011 .0715733 .7101649
|
_cons | .1062147 .04138 -5.76 0.000 .0494955 .2279308
-----------------------+----------------------------------------------------------------
/lnsig2u | -11.16536 15.76088 -42.05612 19.72539
-----------------------+----------------------------------------------------------------
sigma_u | .0037625 .0296499 7.37e-10 19200.6
rho | 4.30e-06 .0000678 1.65e-19 1
----------------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) = 2.2e-04 Prob >= chibar2 = 0.494
I've struggled a bit with interaction terms and how best to present them in a table. Obviously sex and age group can be presented as they are, but I struggle with presenting interaction terms.
I'm presuming that the ORs presented for year are the effect of year in the baseline HIV group (i.e. HIV negative individuals)
Presumably to get the effect of year in those who are HIV positive, I need the following "lincom" commands?
lincom 1.hiv_bin + 1.hiv_bin#2011.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2012.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2013.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2014.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2015.adm_yr2, or
Am I able to present how the effect of being HIV positive vs HIV negative by each year?
Many thanks. I really struggle with interpreting interaction outputs.
Regards, DS
I am trying to analyse cross-sectional data for mortality in a group of individuals.
The 4 variables are:
- Sex [sex2]
- Age grouped into 3 separate 15 year bands [age_grp3]
- HIV status (positive/negative) [hiv_bin]
- Year of admission (2011-2015) [adm_yr2]
Other variables:
- Unique patient identification number [pat_id]
I have been asked to report on interaction between HIV status and year of admission in the model, so have used a random effect logistic model for correlated data for repeated admissions by patients:
xtlogit mort i.sex2 i.age_grp3 i.hiv_bin##i.adm_yr2, i(pat_id) re or
Below is the output I get.
----------------------------------------------------------------------------------------
mort | OR Std. Err. z P>|z| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
1.sex2 | 1.107274 .088486 1.28 0.202 .9467441 1.295023
|
age_grp3 |
2 | 1.313543 .1279757 2.80 0.005 1.085209 1.589919
3 | 1.82075 .2034601 5.36 0.000 1.462624 2.266564
|
1.hiv_bin | 2.224567 .875704 2.03 0.042 1.028416 4.811962
|
adm_yr2 |
2012 | 2.147864 .9851916 1.67 0.096 .8741255 5.277638
2013 | 1.14683 .5800134 0.27 0.786 .4255995 3.090276
2014 | 1.086201 .5485696 0.16 0.870 .4036674 2.922785
2015 | 3.305442 1.875963 2.11 0.035 1.086778 10.05353
|
hiv_bin#adm_yr2 |
1 2012 | .5969703 .283122 -1.09 0.277 .2356448 1.512334
1 2013 | .9695291 .5051271 -0.06 0.953 .3492068 2.691777
1 2014 | .7680384 .4005921 -0.51 0.613 .2763216 2.13477
1 2015 | .2254525 .1319827 -2.54 0.011 .0715733 .7101649
|
_cons | .1062147 .04138 -5.76 0.000 .0494955 .2279308
-----------------------+----------------------------------------------------------------
/lnsig2u | -11.16536 15.76088 -42.05612 19.72539
-----------------------+----------------------------------------------------------------
sigma_u | .0037625 .0296499 7.37e-10 19200.6
rho | 4.30e-06 .0000678 1.65e-19 1
----------------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) = 2.2e-04 Prob >= chibar2 = 0.494
I've struggled a bit with interaction terms and how best to present them in a table. Obviously sex and age group can be presented as they are, but I struggle with presenting interaction terms.
I'm presuming that the ORs presented for year are the effect of year in the baseline HIV group (i.e. HIV negative individuals)
Presumably to get the effect of year in those who are HIV positive, I need the following "lincom" commands?
lincom 1.hiv_bin + 1.hiv_bin#2011.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2012.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2013.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2014.adm_yr2, or
lincom 1.hiv_bin + 1.hiv_bin#2015.adm_yr2, or
Am I able to present how the effect of being HIV positive vs HIV negative by each year?
Many thanks. I really struggle with interpreting interaction outputs.
Regards, DS
Comment