Hello Stata users,
I'm trying to understand an example in Stata Manual of hierarchical models in longitudinal data. The example is in the document of mixed command (page 294) and uses the pigs dataset.
Well, I ran a null model for computing the ICC coefficient (that isn't in the material of mixed) and the ICC is quite small, about zero...
So, I'm confused about the interpretation of ICC in longitudinal data. Can anyone help me?
Thank you!
My script for this and the results:
. use http://www.stata-press.com/data/r13/pig, replace
(Longitudinal analysis of pig weights)
. twoway connected weight week if id<=10, connect(L)
.
. *Null model for calculate icc:
. mixed weight || id:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -1828.2965
Iteration 1: log likelihood = -1827.213
Iteration 2: log likelihood = -1827.2118
Iteration 3: log likelihood = -1827.2118 (backed up)
Computing standard errors:
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Wald chi2(0) = .
Log likelihood = -1827.2118 Prob > chi2 = .
------------------------------------------------------------------------------
weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | 50.40509 .7997195 63.03 0.000 48.83767 51.97251
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Identity |
var(_cons) | 4.52e-13 3.25e-12 3.45e-19 5.92e-07
-----------------------------+------------------------------------------------
var(Residual) | 276.2861 18.79895 241.792 315.7012
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) = 1.8e-12 Prob >= chibar2 = 1.0000
. estat icc
Intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id | 1.63e-15 0 1.63e-15 1.63e-15
------------------------------------------------------------------------------
I'm trying to understand an example in Stata Manual of hierarchical models in longitudinal data. The example is in the document of mixed command (page 294) and uses the pigs dataset.
Well, I ran a null model for computing the ICC coefficient (that isn't in the material of mixed) and the ICC is quite small, about zero...
So, I'm confused about the interpretation of ICC in longitudinal data. Can anyone help me?
Thank you!
My script for this and the results:
. use http://www.stata-press.com/data/r13/pig, replace
(Longitudinal analysis of pig weights)
. twoway connected weight week if id<=10, connect(L)
.
. *Null model for calculate icc:
. mixed weight || id:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -1828.2965
Iteration 1: log likelihood = -1827.213
Iteration 2: log likelihood = -1827.2118
Iteration 3: log likelihood = -1827.2118 (backed up)
Computing standard errors:
Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48
Obs per group: min = 9
avg = 9.0
max = 9
Wald chi2(0) = .
Log likelihood = -1827.2118 Prob > chi2 = .
------------------------------------------------------------------------------
weight | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | 50.40509 .7997195 63.03 0.000 48.83767 51.97251
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Identity |
var(_cons) | 4.52e-13 3.25e-12 3.45e-19 5.92e-07
-----------------------------+------------------------------------------------
var(Residual) | 276.2861 18.79895 241.792 315.7012
------------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01) = 1.8e-12 Prob >= chibar2 = 1.0000
. estat icc
Intraclass correlation
------------------------------------------------------------------------------
Level | ICC Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
id | 1.63e-15 0 1.63e-15 1.63e-15
------------------------------------------------------------------------------
Comment