Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • TSCS with Poisson Dependent Variable: choosing among ppml, nbreg, xinb, zip

    Dear Statalisters,

    I am currently working with a T dominant panel --time-series cross-section dataset-- that has N = 8 (the eight European countries) and T = 32 (32 quarters for each country). The dependent variable -bailout conditionality- follows a Poisson distribution, with excess of 0s (66.67%) and a lot of over-dispersion (with mean = 4.74 and standard deviation = 12.23). There are just 4 regressors, the one of interest and three controls. Overall, this means that, a priori, I can estimate my model using Negative Binomial Regression -nbreg-, Zero Inflated Negative Binomial -zinb-, Zero Inflated Poisson -zip- and Poisson Pseudo Maximum Likelihood, implemented as the user-written function -ppml-. The first thing I do is testing for potential problems of the data. Just let me point out that the data shows (a) contemporaneous autocorrelation, (b) panel heteroskedasticity, (c) endogeneity and (d) non-stationarity (luckily, though, errors seem to be serially independent). To meet the exogeneity assumption, all the covariates are conveniently lagged. To meet the stationarity assumption, those variables that show unit roots are first differentiated. Let me show you now an extract of my dataset (the initial missing values are due to lagging and differentiation).

    Code:
    "IRELAND" 1 "2007Q1"  1 2007   0   .          .    .          .
    "IRELAND" 1 "2007Q2"  2 2007   0   .          .    .          .
    "IRELAND" 1 "2007Q3"  3 2007   0 6.3          .    .          .
    "IRELAND" 1 "2007Q4"  4 2007   0 6.3          .    .          .
    "IRELAND" 1 "2008Q1"  5 2008   0 5.9          .    .          .
    "IRELAND" 1 "2008Q2"  6 2008   0 5.9 -.19999886    0   .4000001
    "IRELAND" 1 "2008Q3"  7 2008   0 5.9          4    0          0
    "IRELAND" 1 "2008Q4"  8 2008   0 5.9  -3.700001    0          0
    "IRELAND" 1 "2009Q1"  9 2009   0 5.9        2.5    0  -.2000003
    "IRELAND" 1 "2009Q2" 10 2009   0 5.9   4.800001    0   .4000001
    "IRELAND" 1 "2009Q3" 11 2009   0 5.9   5.899998    0   .0999999
    "IRELAND" 1 "2009Q4" 12 2009   0 5.9   5.300003    0  -.0999999
    "IRELAND" 1 "2010Q1" 13 2010   0 5.9   6.599998    0   .9000001
    "IRELAND" 1 "2010Q2" 14 2010   0 5.9   7.599998  -.5          0
    "IRELAND" 1 "2010Q3" 15 2010   0 5.9   2.600002    0  -.4000001
    "IRELAND" 1 "2010Q4" 16 2010   0 5.9  2.5999985   -1  -.2999997
    "IRELAND" 1 "2011Q1" 17 2011  27 5.9  12.399998    0 -.10000038
    "IRELAND" 1 "2011Q2" 18 2011  10 5.9  .20000458    0   .3000002
    "IRELAND" 1 "2011Q3" 19 2011  11 5.5          9    0   .5999999
    "IRELAND" 1 "2011Q4" 20 2011  14 5.5  3.4000015   -2        2.1
    "IRELAND" 1 "2012Q1" 21 2012   5 5.5   6.599998    0        1.5
    "IRELAND" 1 "2012Q2" 22 2012   4 5.5   .5999985    0  1.4000006
    "IRELAND" 1 "2012Q3" 23 2012   3 5.5  16.300003    0  -.4000006
    "IRELAND" 1 "2012Q4" 24 2012   9 5.5 -1.2000046    0 -1.8000002
    "IRELAND" 1 "2013Q1" 25 2013   5 5.5  2.4000015    0 -1.1999998
    "IRELAND" 1 "2013Q2" 26 2013   4 5.5   2.300003    0  -.1999998
    "IRELAND" 1 "2013Q3" 27 2013   3 5.5          6    0 -1.1999998
    "IRELAND" 1 "2013Q4" 28 2013   2 5.5   .2999954  -.5 -1.1000004
    "IRELAND" 1 "2014Q1" 29 2014   0 5.5  4.0999985    0  -.7999997
    "IRELAND" 1 "2014Q2" 30 2014   0 5.5          1    0 -.10000014
    "IRELAND" 1 "2014Q3" 31 2014   0 5.5  -2.399994    0  .10000014
    "IRELAND" 1 "2014Q4" 32 2014   0 5.5  -2.800003    0  -.3000002
    "IRELAND" 1 "2015Q1" 33 2015   0 5.5  -1.199997    0  -.3999999
    "IRELAND" 1 "2015Q2" 34 2015   0 5.5 -4.4000015    0        -.5
    "IRELAND" 1 "2015Q3" 35 2015   0 5.5 -1.7000046    1        -.7
    "IRELAND" 1 "2015Q4" 36 2015   0 5.5  -5.199997    0        -.5
    "GREECE"  2 "2007Q1"  1 2007   0   .          .    .          .
    [...]
    I am currently running these models:
    (1) Poisson Pseudo Maximum Likelihood with Fixed Effects (ppml)
    (2) Poisson Pseudo Maximum Likelihood with Fixed Effects and Quadratic Time Trend (ppml)
    (3) Negative Binomial with Fixed Effects (nbreg)
    (4) Negative Binomial with Fixed Effects and Quadratic Time Trend (nbreg)
    (5) Zero Inflated Negative Binomial with Fixed Effects (zinb)
    (6) Zero Inflated Negative Binomial with Fixed Effects and Quadratic Time Trend (zinb)
    (7) Zero Inflated Poisson with Fixed Effects (zip)
    (8) Zero Inflated Poisson with Fixed Effects and Quadratic Time Trend (zip)

    The output of each model can be seen here:

    Code:
    (1)
    . ppml bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_
    > interest_rate d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_id5 d_country_id6 d_
    > country_id7 d_country_id8, cluster(quarter_id)
    note: checking the existence of the estimates
    WARNING: M_sovereign_debt has very large values, consider rescaling  or recentering
    note: starting ppml estimation
    
    [...]
    
    Number of parameters: 13
    Number of observations: 248
    Number of observations dropped: 0
    Pseudo log-likelihood: -1434.555
    R-squared: .33843253
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    A_government_partisanship |  -.2232219   .1128043    -1.98   0.048    -.4443143   -.0021295
             M_sovereign_debt |   .0825423   .0369093     2.24   0.025     .0102014    .1548831
               M_fitch_rating |   -.533758   .1892423    -2.82   0.005     -.904666   -.1628499
    M_sovereign_interest_rate |   .2165422   .1079706     2.01   0.045     .0049237    .4281608
                d_country_id1 |  -1.136513   .3853649    -2.95   0.003    -1.891814   -.3812115
                d_country_id2 |   .3066859   .3146976     0.97   0.330    -.3101101    .9234819
                d_country_id3 |  -2.179942   .6242554    -3.49   0.000     -3.40346   -.9564239
                d_country_id4 |  -1.690297   .5361264    -3.15   0.002    -2.741086    -.639509
                d_country_id5 |   -.234904   .4186861    -0.56   0.575    -1.055514    .5857057
                d_country_id6 |  -1.737111   .3672441    -4.73   0.000    -2.456896   -1.017326
                d_country_id7 |  -.4952458    .507592    -0.98   0.329    -1.490108    .4996163
                d_country_id8 |          0  (omitted)
                        _cons |   3.110228   .5331654     5.83   0.000     2.065243    4.155213
    -------------------------------------------------------------------------------------------
    Number of regressors dropped to ensure that the estimates exist: 0
    Option strict is off
    
    (2)
    . ppml bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate quarter_id quarter_id2 d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_
    > id5 d_country_id6 d_country_id7 d_country_id8, cluster(quarter_id)
    note: checking the existence of the estimates
    WARNING: M_sovereign_debt has very large values, consider rescaling  or recentering
    WARNING: quarter_id has very large values, consider rescaling  or recentering
    WARNING: quarter_id2 has very large values, consider rescaling  or recentering
    note: starting ppml estimation
    
    [...]
    
    Number of parameters: 15
    Number of observations: 248
    Number of observations dropped: 0
    Pseudo log-likelihood: -1315.9455
    R-squared: .37590262
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    A_government_partisanship |  -.2363886   .1331831    -1.77   0.076    -.4974226    .0246455
             M_sovereign_debt |   .0503378   .0229217     2.20   0.028     .0054121    .0952634
               M_fitch_rating |  -.3278799   .1733408    -1.89   0.059    -.6676216    .0118619
    M_sovereign_interest_rate |   .1765052   .0960089     1.84   0.066    -.0116688    .3646793
                   quarter_id |   .3508606   .1065146     3.29   0.001     .1420959    .5596253
                  quarter_id2 |  -.0079596   .0027167    -2.93   0.003    -.0132841    -.002635
                d_country_id1 |  -1.066567   .4007632    -2.66   0.008    -1.852049   -.2810858
                d_country_id2 |   .3761135    .340171     1.11   0.269    -.2906093    1.042836
                d_country_id3 |  -2.159306   .6578863    -3.28   0.001    -3.448739   -.8698722
                d_country_id4 |  -1.779881   .5969538    -2.98   0.003    -2.949889   -.6098734
                d_country_id5 |  -.1030793   .5012644    -0.21   0.837     -1.08554    .8793809
                d_country_id6 |   -1.62356   .3953631    -4.11   0.000    -2.398457   -.8486624
                d_country_id7 |  -.4166418   .5191953    -0.80   0.422    -1.434246    .6009622
                d_country_id8 |          0  (omitted)
                        _cons |  -.1420932   1.027489    -0.14   0.890    -2.155935    1.871748
    -------------------------------------------------------------------------------------------
    Number of regressors dropped to ensure that the estimates exist: 0
    Option strict is off
    
    (3)
    . zinb bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_id5 d_country_id6 d_country_id7 d_country_id8, inflate(M_sovereign_deb
    > t M_fitch_rating M_sovereign_interest_rate) cluster(quarter_id)
    
    [...]
    
    Zero-inflated negative binomial regression        Number of obs   =        248
                                                      Nonzero obs     =         96
                                                      Zero obs        =        152
    
    Inflation model      = logit                      Wald chi2(11)   =      71.86
    Log pseudolikelihood = -479.0765                  Prob > chi2     =     0.0000
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    bailout_conditionality_a  |
    A_government_partisanship |  -.3144175   .1103015    -2.85   0.004    -.5306045   -.0982305
             M_sovereign_debt |    .030327   .0150157     2.02   0.043     .0008969    .0597572
               M_fitch_rating |  -.2300645   .1684376    -1.37   0.172    -.5601962    .1000672
    M_sovereign_interest_rate |   .1404795   .0656083     2.14   0.032     .0118896    .2690693
                d_country_id1 |  -.5401905   .3440433    -1.57   0.116    -1.214503    .1341219
                d_country_id2 |    .346963   .2893588     1.20   0.230    -.2201698    .9140958
                d_country_id3 |  -.0407952   .7554484    -0.05   0.957    -1.521447    1.439856
                d_country_id4 |   .0036681   .4887628     0.01   0.994    -.9542893    .9616255
                d_country_id5 |   .3373251   .3641198     0.93   0.354    -.3763366    1.050987
                d_country_id6 |  -1.420092   .3754115    -3.78   0.000    -2.155885   -.6842989
                d_country_id7 |   .1183418   .3919655     0.30   0.763    -.6498964      .88658
                d_country_id8 |          0  (omitted)
                        _cons |   4.102541   .5358301     7.66   0.000     3.052333    5.152748
    --------------------------+----------------------------------------------------------------
    inflate                   |
             M_sovereign_debt |   -.118818   .0815607    -1.46   0.145    -.2786741    .0410381
               M_fitch_rating |   .9684598   .5973118     1.62   0.105    -.2022497    2.139169
    M_sovereign_interest_rate |   -.110943   .1953075    -0.57   0.570    -.4937386    .2718526
                        _cons |   .6802068   .2684972     2.53   0.011     .1539619    1.206452
    --------------------------+----------------------------------------------------------------
                     /lnalpha |  -.6217049   .1756533    -3.54   0.000     -.965979   -.2774308
    --------------------------+----------------------------------------------------------------
                        alpha |   .5370281   .0943307                      .3806104     .757728
    -------------------------------------------------------------------------------------------
    
    (4)
    . zinb bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate quarter_id quarter_id2 d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_id5 d_country_id6 d_country_id7 d_country_id8, 
    > inflate(M_sovereign_debt M_fitch_rating M_sovereign_interest_rate) cluster(quarter_id)
    
    [...] 
    
    Zero-inflated negative binomial regression        Number of obs   =        248
                                                      Nonzero obs     =         96
                                                      Zero obs        =        152
    
    Inflation model      = logit                      Wald chi2(13)   =      87.91
    Log pseudolikelihood = -463.4255                  Prob > chi2     =     0.0000
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    bailout_conditionality_a  |
    A_government_partisanship |  -.3946015   .1213576    -3.25   0.001     -.632458   -.1567451
             M_sovereign_debt |   .0119484   .0144604     0.83   0.409    -.0163934    .0402902
               M_fitch_rating |  -.0653695   .1739451    -0.38   0.707    -.4062957    .2755567
    M_sovereign_interest_rate |   .0989751   .0421587     2.35   0.019     .0163455    .1816048
                   quarter_id |  -.1534731    .089372    -1.72   0.086    -.3286389    .0216928
                  quarter_id2 |   .0012115   .0018029     0.67   0.502    -.0023222    .0047452
                d_country_id1 |  -.3765907   .2352637    -1.60   0.109    -.8376991    .0845176
                d_country_id2 |   .6977724   .2503369     2.79   0.005     .2071212    1.188424
                d_country_id3 |   .5658847   .6195751     0.91   0.361    -.6484602     1.78023
                d_country_id4 |   1.143576    .571354     2.00   0.045     .0237426    2.263409
                d_country_id5 |  -.1220788   .4171782    -0.29   0.770     -.939733    .6955754
                d_country_id6 |  -2.535287   .4798754    -5.28   0.000    -3.475825   -1.594748
                d_country_id7 |   .1807495   .3298403     0.55   0.584    -.4657256    .8272246
                d_country_id8 |          0  (omitted)
                        _cons |   7.248888    1.15053     6.30   0.000      4.99389    9.503885
    --------------------------+----------------------------------------------------------------
    inflate                   |
             M_sovereign_debt |   -.103604   .0830426    -1.25   0.212    -.2663645    .0591566
               M_fitch_rating |    .951205   .5824234     1.63   0.102    -.1903239    2.092734
    M_sovereign_interest_rate |  -.0922096   .1861618    -0.50   0.620    -.4570801    .2726609
                        _cons |    .570622   .3036781     1.88   0.060    -.0245761     1.16582
    --------------------------+----------------------------------------------------------------
                     /lnalpha |  -.8812492   .1682219    -5.24   0.000    -1.210958   -.5515403
    --------------------------+----------------------------------------------------------------
                        alpha |   .4142651   .0696885                      .2979117    .5760618
    -------------------------------------------------------------------------------------------
    
    (5)
    . zip bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate i.country_id, inflate(M_sovereign_debt M_fitch_rating M_sovereign_interest_rate) cluster(quarter_id)
    
    [...]
    
    Zero-inflated Poisson regression                  Number of obs   =        248
                                                      Nonzero obs     =         96
                                                      Zero obs        =        152
    
    Inflation model      = logit                      Wald chi2(11)   =      60.45
    Log pseudolikelihood = -745.2113                  Prob > chi2     =     0.0000
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    bailout_conditionality_a  |
    A_government_partisanship |    -.25843   .0597643    -4.32   0.000    -.3755659    -.141294
             M_sovereign_debt |   .0314059   .0208239     1.51   0.132    -.0094081      .07222
               M_fitch_rating |  -.2845093   .1639349    -1.74   0.083    -.6058158    .0367972
    M_sovereign_interest_rate |   .1366641   .0673081     2.03   0.042     .0047427    .2685854
                              |
                   country_id |
                           2  |   .9922899   .3678644     2.70   0.007     .2712889    1.713291
                           3  |   .3631831   .5408212     0.67   0.502     -.696807    1.423173
                           4  |   .2537689   .3312795     0.77   0.444    -.3955269    .9030647
                           5  |   .8156418   .3039924     2.68   0.007     .2198275    1.411456
                           6  |   -.568403   .2822637    -2.01   0.044     -1.12163   -.0151764
                           7  |   .8606325   .4337827     1.98   0.047     .0104341    1.710831
                           8  |   .4228438   .3118131     1.36   0.175    -.1882987    1.033986
                              |
                        _cons |   3.261526   .3712896     8.78   0.000     2.533811     3.98924
    --------------------------+----------------------------------------------------------------
    inflate                   |
             M_sovereign_debt |  -.1220591   .0776563    -1.57   0.116    -.2742627    .0301445
               M_fitch_rating |   .9690261   .5705194     1.70   0.089    -.1491714    2.087224
    M_sovereign_interest_rate |  -.1190887   .1970787    -0.60   0.546    -.5053559    .2671784
                        _cons |   .7676975   .2493916     3.08   0.002     .2788989    1.256496
    -------------------------------------------------------------------------------------------
    
    (6)
    . zip bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate quarter_id quarter_id2 i.country_id, inflate(M_sovereign_debt M_fitch_rating M_sovereign_interest_rate) cluster(quarter_id)
    
    [...]
    
    Zero-inflated Poisson regression                  Number of obs   =        248
                                                      Nonzero obs     =         96
                                                      Zero obs        =        152
    
    Inflation model      = logit                      Wald chi2(13)   =      93.75
    Log pseudolikelihood = -708.4248                  Prob > chi2     =     0.0000
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    bailout_conditionality_a  |
    A_government_partisanship |  -.2488389    .062078    -4.01   0.000    -.3705095   -.1271683
             M_sovereign_debt |   .0232429   .0198515     1.17   0.242    -.0156653    .0621511
               M_fitch_rating |  -.1942654   .1905968    -1.02   0.308    -.5678282    .1792974
    M_sovereign_interest_rate |   .1095538   .0703574     1.56   0.119    -.0283441    .2474517
                   quarter_id |  -.0727754   .0880591    -0.83   0.409    -.2453681    .0998172
                  quarter_id2 |   .0005671    .001943     0.29   0.770    -.0032411    .0043753
                              |
                   country_id |
                           2  |    1.00438   .3742975     2.68   0.007       .27077    1.737989
                           3  |   .5049016   .5083995     0.99   0.321     -.491543    1.501346
                           4  |   .5607791   .3410848     1.64   0.100    -.1077347    1.229293
                           5  |   .3959234   .3427282     1.16   0.248    -.2758116    1.067658
                           6  |  -1.133306   .3998859    -2.83   0.005    -1.917068   -.3495439
                           7  |    .796642   .4162661     1.91   0.056    -.0192245    1.612508
                           8  |   .4218333   .3104565     1.36   0.174    -.1866503    1.030317
                              |
                        _cons |   4.604716   1.164914     3.95   0.000     2.321526    6.887905
    --------------------------+----------------------------------------------------------------
    inflate                   |
             M_sovereign_debt |  -.1179454   .0782564    -1.51   0.132    -.2713252    .0354344
               M_fitch_rating |   .9599652   .5687244     1.69   0.091    -.1547141    2.074645
    M_sovereign_interest_rate |  -.1149118   .1946103    -0.59   0.555     -.496341    .2665173
                        _cons |   .7311145   .2582689     2.83   0.005     .2249169    1.237312
    -------------------------------------------------------------------------------------------
    
    (7)
    . nbreg bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_id5 d_country_id6 d_country_id7 d_country_id8, cluster(quarter_id)
    
    [...]
    
    Negative binomial regression                      Number of obs   =        248
                                                      Wald chi2(11)   =      98.29
    Dispersion           = mean                       Prob > chi2     =     0.0000
    Log pseudolikelihood = -506.86994                 Pseudo R2       =     0.0398
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    A_government_partisanship |   .0429828   .1050286     0.41   0.682    -.1628696    .2488351
             M_sovereign_debt |   .0841299    .021235     3.96   0.000     .0425102    .1257497
               M_fitch_rating |   -.778131   .2938107    -2.65   0.008    -1.353989   -.2022725
    M_sovereign_interest_rate |   .2651588   .0659782     4.02   0.000     .1358439    .3944737
                d_country_id1 |  -1.596139   .4241074    -3.76   0.000    -2.427374   -.7649036
                d_country_id2 |  -.0086451   .3706302    -0.02   0.981     -.735067    .7177768
                d_country_id3 |  -2.839683   .7393523    -3.84   0.000    -4.288787   -1.390579
                d_country_id4 |   -1.72478   .4915958    -3.51   0.000    -2.688291   -.7612704
                d_country_id5 |  -1.117178   .3758329    -2.97   0.003    -1.853797   -.3805592
                d_country_id6 |  -1.800344   .5819865    -3.09   0.002    -2.941016   -.6596713
                d_country_id7 |  -.9247609   .5242241    -1.76   0.078    -1.952221    .1026995
                d_country_id8 |          0  (omitted)
                        _cons |   1.997088   .5753089     3.47   0.001     .8695037    3.124673
    --------------------------+----------------------------------------------------------------
                     /lnalpha |   1.609591   .1554772                      1.304862    1.914321
    --------------------------+----------------------------------------------------------------
                        alpha |   5.000767   .7775052                      3.687179    6.782332
    -------------------------------------------------------------------------------------------
    
    (8)
    . nbreg bailout_conditionality_a A_government_partisanship M_sovereign_debt M_fitch_rating M_sovereign_interest_rate quarter_id quarter_id2 d_country_id1 d_country_id2 d_country_id3 d_country_id4 d_country_id5 d_country_id6 d_country_id7 d_country_id8,
    >  cluster(quarter_id)
    
    [...]
    
    Negative binomial regression                      Number of obs   =        248
                                                      Wald chi2(13)   =     218.90
    Dispersion           = mean                       Prob > chi2     =     0.0000
    Log pseudolikelihood =  -495.7899                 Pseudo R2       =     0.0608
    
                                             (Std. Err. adjusted for 31 clusters in quarter_id)
    -------------------------------------------------------------------------------------------
                              |               Robust
     bailout_conditionality_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------------------+----------------------------------------------------------------
    A_government_partisanship |  -.0057892   .0925691    -0.06   0.950    -.1872214    .1756429
             M_sovereign_debt |   .0781654   .0299451     2.61   0.009      .019474    .1368569
               M_fitch_rating |  -.4685302   .2934263    -1.60   0.110    -1.043635    .1065748
    M_sovereign_interest_rate |   .3515901   .0900972     3.90   0.000      .175003    .5281773
                   quarter_id |   .5686942   .1370709     4.15   0.000     .3000402    .8373483
                  quarter_id2 |  -.0124353   .0027232    -4.57   0.000    -.0177728   -.0070978
                d_country_id1 |  -1.883564   .4754332    -3.96   0.000    -2.815396   -.9517326
                d_country_id2 |   .2999586   .3884831     0.77   0.440    -.4614543    1.061372
                d_country_id3 |  -3.043286   .7101179    -4.29   0.000    -4.435092   -1.651481
                d_country_id4 |  -1.274951   .5938348    -2.15   0.032    -2.438846   -.1110561
                d_country_id5 |  -.7350396   .5716031    -1.29   0.198    -1.855361    .3852819
                d_country_id6 |  -1.087217   .7629414    -1.43   0.154    -2.582554    .4081208
                d_country_id7 |  -1.343735   .5463081    -2.46   0.014    -2.414479    -.272991
                d_country_id8 |          0  (omitted)
                        _cons |   -3.52121   1.617225    -2.18   0.029    -6.690913    -.351506
    --------------------------+----------------------------------------------------------------
                     /lnalpha |   1.460274   .1250615                      1.215158     1.70539
    --------------------------+----------------------------------------------------------------
                        alpha |   4.307139   .5386572                      3.370826    5.503531
    -------------------------------------------------------------------------------------------
    I am actually comparing the models as follows. I first run -zinb [...], zip vuong". Since both tests are positive and highly significant, -zinb- is preferred to -zip- or -nbreg-. Then, I test how ppml performs with -hpc-. Here, -ppml- seems to clearly beat -xtnbreg-, but it does not seem to perform better than the other three models that -xtnbreg- does beat. I think this is puzzling. The actual results of the tests are not provided. Let me now go with the actual questions.

    (a) Do unit fixed effects dummies make sense or will any of the previous models suffer the incidental parameters bias?

    (b) Is stationarity still an assumption to be met on these models? And strict exogeneity? In case they are, is my approach to solve them correct?

    (c) Does robustness against general forms of heteroskedasticity protect against panel heteroskedasticity?

    (d) Since there is no serial correlation but there is contemporaneous correlation, I am clustering on quarter_id (time) and not country_id (unit). Does it make any sense?

    (e) In zero-inflated models, I am assuming that the process that leads an observation to be a "true" zero or not is the same that determines the count but dropping one regressor for theoretical reasons. To what extent is this valid? And, more importantly, what are the consequences of specifying the logit model as a single constant? And, finally, can inflate be a function of variables not included in the main model?

    (f) Zero Inflated models assume two underlying processes generating the excess of zeroes. That is true in my case, but only 6% of the zeroes are not true zeroes. Then, knowing this and the results of the tests, should I still go for Zero Inflated models?

    (g) Following the tests and all the information provided, which set of models should I consider the best?

    (h) I understand when I may need to use nbreg, zip and zinb; but I do not see when ppml should be used. When is adequate to use -ppml-? Or, more sincerely, is it adequate to use ppml with my dataset? Why? This is actually a crucial question.

    (i) In Zero Inflated models, how shall coefficients in the logit be interpreted? Do negative coefficients indicate higher or lower probability of being a true zero? Is it relevant if coefficients of the logit model are not significant at all?

    (j) Am I missing any other potentially proper way of estimating the model?

    Thank you all very much for your time.

    Best,
    Héctor.

  • #2
    Dear Hector,

    To be able to help, we need to know exactly what you want to do with your model and how your dependent variable is measured.

    Best regards,

    Joao

    Comment


    • #3
      Dear Professor Joao Santos Silva,

      Thank you very much for your fast reply. The only reason why I have not been more specific is the 30,000 characters maximum. Replying to your questions:

      (a) The dependent variable is bailout_conditionality_a, and it is a count variable. I basically count all the measures agreed in the Memorandums of Understanding of all EU bailout packages, and I classify them by quarters (MoUs specify the number of measures to be taken in each quarter, so I just take all the MoUs and count those). Thus, I have some quarters with 0 measures (either because there was no bailout going on or because the bailout implied 0 measures for that particular period). I would love to explain it better, but I am afraid this might be my best explanation.

      (b) I am not sure I understand your second point, but let me try to address it. In short, my purpose is to see if government partisanship (measured as 0 - 10, where 0 extreme left and 10 extreme right) has an impact on the number of measures to be taken in each quarter, controlling for three key economic covariates (Fitch ratings, public debt as a percentage of GDP and sovereign interest rates).

      I do not want to get this thesis to get published or anything like that, but I'd like to have a more or less solid econometric analysis in my Master's Dissertation.

      I hope the information I provided is all you need. If there is any additional information I can supply, just let me know and I'll be happy to supply it.

      Once again, thank you very much for your interest.

      Best Regards,
      Héctor.

      Comment


      • #4
        Dear Hector,

        Thanks for the additional information. Given what you say, I would focus on the Poisson regression (you can use either -ppml- or the Stata command -poisson- with robust standard errors) simply because it is parsimonious and robust. If you wanted to compute probabilities (say, the probability of a zero) you would need to correctly specify the conditional distribution and then you would have to worry about overdispersion and excess of zeros. However, since you essentially just need the conditional mean, the basic Poisson regression should be fine.

        All the best,

        Joao

        Comment


        • #5
          Dear Professor Joao Santos Silva,

          Your advise is that I do Poisson despite the over-dispersion and the excess of zeroes just because it is parsimonious? There is clearly something I am missing or misunderstanding, since I thought Poisson was never an adequate estimation procedure with these two characteristics in the dependent variable, no matter the goal.

          Thank you very much.

          Best Regards,
          Héctor.

          Comment


          • #6
            Dear Hector,

            The key point you missed in my reply is that Poisson regression is robust; that is, the estimator is consistent as long as the conditional mean is correctly specified. So, overdispersion and excess-zeros (if indeed are present) do not matter much. The case would be different if you wanted to compute probabilities, which I do not think is your case.

            All the best,

            Joao

            Comment


            • #7
              Dear Professor Joao Santos Silva,

              Thank you very much for your reply. I'm afraid I need to do some research to figure out the difference between estimating probabilities and just conditional means. Once I have done my homework, I'll get back to Statalist if I still need help (which is very likely). Could you provide any reference to start investigating?

              Best Regards,
              Héctor.
              Last edited by Hector Hermida; 09 Jul 2016, 16:24.

              Comment


              • #8
                Dear Hector,

                You can start with good textbooks (Wooldridge or Cameron & Trivedi are great choices).

                All the best,

                Joao

                Comment


                • #9
                  (d) Since there is no serial correlation but there is contemporaneous correlation.

                  Hi Hector,

                  Can you please guide me on how did you find that there is a contemporaneous correlation. What command did you use?

                  Comment

                  Working...
                  X