Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Dickey-Fuller F statistics for testing joint hypotheses

    The command dfuller provides the Dickey-Fuller critical values for the unit root test, but how do I run the Dickey-Fuller F tests in Stata?

    Thanks!

  • #2
    Bump. It can't be that Stata doesn't have this functionality, can it?

    Comment


    • #3

      Welcome to the Stata Forum.

      Unfortunately, your query is far away from my field. But a quick look at the Manual(http://www.stata.com/manuals13/xtxtunitroot.pdf) provided me with this:

      Fisher-type tests [...]
      The null hypothesis being tested by xtunitroot fisher is that all panels contain a unit root.
      You may also wish to check example 6, on pages 16 and 17.

      Hopefully that helps.


      Best,


      Marcos
      Best regards,

      Marcos

      Comment


      • #4
        This example maybe help you to claculate F-Test of Dickey-Fuller unit-root test

        Code:
        clear all
        input y
         99.2
           99
          100
        111.6
        122.2
        117.6
        121.1
          136
        154.2
        153.6
        158.5
        140.6
        136.2
          168
        154.3
          149
        165.5
        end
        
        gen Time =_n
        tsset Time
        reg d.y l.y
        test _cons=0 , notest
        test l.y=0 , accumulate

        HTML Code:
         gen Time =_n
        
        . tsset Time
                time variable:  Time, 1 to 17
                        delta:  1 unit
        
        . reg d.y l.y
        
              Source |       SS       df       MS              Number of obs =      16
        -------------+------------------------------           F(  1,    14) =    1.51
               Model |  236.129283     1  236.129283           Prob > F      =  0.2392
            Residual |  2187.16985    14  156.226418           R-squared     =  0.0974
        -------------+------------------------------           Adj R-squared =  0.0330
               Total |  2423.29914    15  161.553276           Root MSE      =  12.499
        
        ------------------------------------------------------------------------------
                 D.y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
                   y |
                 L1. |  -.1731765   .1408612    -1.23   0.239    -.4752936    .1289406
                     |
               _cons |   27.10154   18.93342     1.43   0.174    -13.50661    67.70969
        ------------------------------------------------------------------------------
        
        . test _cons=0 ,  notest
        
         ( 1)  _cons = 0
        
        . test l.y=0 , accumulate
        
         ( 1)  _cons = 0
         ( 2)  L.y = 0
        
               F(  2,    14) =    1.63
                    Prob > F =    0.2301
        Emad A. Shehata
        Professor (PhD Economics)
        Agricultural Research Center - Agricultural Economics Research Institute - Egypt
        Email: [email protected]
        IDEAS: http://ideas.repec.org/f/psh494.html
        EconPapers: http://econpapers.repec.org/RAS/psh494.htm
        Google Scholar: http://scholar.google.com/citations?...r=cOXvc94AAAAJ

        Comment


        • #5
          t-test = -1.23
          is identical to:

          HTML Code:
          . dfuller y , lag(0)
          
          Dickey-Fuller test for unit root                   Number of obs   =        16
          
                                         ---------- Interpolated Dickey-Fuller ---------
                            Test         1% Critical       5% Critical      10% Critical
                         Statistic           Value             Value             Value
          ------------------------------------------------------------------------------
           Z(t)             -1.229            -3.750            -3.000            -2.630
          ------------------------------------------------------------------------------
          MacKinnon approximate p-value for Z(t) = 0.6608
          Emad A. Shehata
          Professor (PhD Economics)
          Agricultural Research Center - Agricultural Economics Research Institute - Egypt
          Email: [email protected]
          IDEAS: http://ideas.repec.org/f/psh494.html
          EconPapers: http://econpapers.repec.org/RAS/psh494.htm
          Google Scholar: http://scholar.google.com/citations?...r=cOXvc94AAAAJ

          Comment

          Working...
          X