Hi,
I am looking at determinants of football player transfer values and am running a Tobit model because in the five different transfer window periods I am looking at, there are multiple transfer window periods where some of the 1,162 players who have been transferred at least once over the period are not transferred in a single window. The variables I am concentrating on are the country variables (France, Germany, Italy and Spain, with England as the default) which tell us which country the buying club is from. I first ran a POLS regression on Stata/IC 13.0 and got the following results:
Following this, I ran my Tobit model using the actual transferamount instead of its logarithmic transformation as my dependant variable:
My question is what command do I use to predict the probability of being transferred in the first place? is it just probit? As in:
I just wanted to know if that was correct?
Regards,
Arunan
I am looking at determinants of football player transfer values and am running a Tobit model because in the five different transfer window periods I am looking at, there are multiple transfer window periods where some of the 1,162 players who have been transferred at least once over the period are not transferred in a single window. The variables I am concentrating on are the country variables (France, Germany, Italy and Spain, with England as the default) which tell us which country the buying club is from. I first ran a POLS regression on Stata/IC 13.0 and got the following results:
HTML Code:
. reg lntransferamount age c.age#c.age careerapps psapps goalsperapps psgoalsperapps cardsperapps previous internationa > l stadiumsize samecountry championsleague ib1.country ib1.transferwindow, robust Linear regression Number of obs = 1274 F( 20, 1253) = 55.60 Prob > F = 0.0000 R-squared = 0.4664 Root MSE = 1.0096 --------------------------------------------------------------------------------- | Robust lntransferamo~t | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- age | .6144103 .0977339 6.29 0.000 .4226702 .8061504 | c.age#c.age | -.0149091 .001991 -7.49 0.000 -.0188151 -.0110031 | careerapps | .0043707 .0006807 6.42 0.000 .0030352 .0057063 psapps | .0090319 .0037756 2.39 0.017 .0016248 .016439 goalsperapps | .6280397 .3432439 1.83 0.068 -.0453564 1.301436 psgoalsperapps | .9591219 .2556548 3.75 0.000 .4575633 1.460681 cardsperapps | .6131814 .2791761 2.20 0.028 .0654772 1.160886 previous | -.0260364 .0300142 -0.87 0.386 -.08492 .0328471 international | .763968 .0630331 12.12 0.000 .6403059 .8876301 stadiumsize | .0000102 1.81e-06 5.64 0.000 6.66e-06 .0000138 samecountry | -.0233719 .0615943 -0.38 0.704 -.1442113 .0974675 championsleague | .6180493 .0670171 9.22 0.000 .4865712 .7495274 | country | France | -.8619394 .1004574 -8.58 0.000 -1.059023 -.6648562 Germany | -.9344916 .0839407 -11.13 0.000 -1.099171 -.7698117 Italy | -.6862306 .0857381 -8.00 0.000 -.8544366 -.5180246 Spain | -.532628 .0958584 -5.56 0.000 -.7206886 -.3445674 | transferwindow | 1314winter | -.1716262 .145408 -1.18 0.238 -.4568962 .1136438 1415summer | .0629959 .0740797 0.85 0.395 -.0823381 .2083299 1415winter | .2538851 .1380694 1.84 0.066 -.0169877 .5247578 1516summer | .2977427 .0742388 4.01 0.000 .1520968 .4433887 | _cons | 6.716617 1.201863 5.59 0.000 4.358731 9.074504 ---------------------------------------------------------------------------------
HTML Code:
. tobit transferamount age c.age#c.age careerapps psapps goalsperapps psgoalsperapps previous international cardsperapp > s stadiumsize samecountry championsleague ib1.country ib1.transferwindow, ll(0) Tobit regression Number of obs = 5810 LR chi2(20) = 765.42 Prob > chi2 = 0.0000 Log likelihood = -23681.995 Pseudo R2 = 0.0159 --------------------------------------------------------------------------------- transferamount | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- age | 718024.1 567070.3 1.27 0.205 -393645.6 1829694 | c.age#c.age | -20061.37 11686.19 -1.72 0.086 -42970.68 2847.937 | careerapps | 8047.996 4083.379 1.97 0.049 43.04619 16052.95 psapps | 12644.65 21512.37 0.59 0.557 -29527.64 54816.94 goalsperapps | 1804404 2195759 0.82 0.411 -2500105 6108913 psgoalsperapps | 2506452 1764349 1.42 0.155 -952331.6 5965236 previous | 183193 166821.2 1.10 0.272 -143838.9 510224.9 international | 1515760 388503.4 3.90 0.000 754147.9 2277372 cardsperapps | 1615213 1480409 1.09 0.275 -1286942 4517368 stadiumsize | 21.48387 10.90892 1.97 0.049 .0983054 42.86943 samecountry | -277640 368809.6 -0.75 0.452 -1000645 445364.6 championsleague | 1274384 414494.4 3.07 0.002 461819.8 2086948 | country | France | -1444035 574849.9 -2.51 0.012 -2570956 -317114.6 Germany | -1538383 532428.4 -2.89 0.004 -2582141 -494624 Italy | -1236895 528943.9 -2.34 0.019 -2273823 -199967.4 Spain | -637639.4 586651.8 -1.09 0.277 -1787696 512417.5 | transferwindow | 1314winter | -1.00e+07 672987.4 -14.92 0.000 -1.14e+07 -8718707 1415summer | -251955.2 470031.4 -0.54 0.592 -1173392 669482 1415winter | -1.00e+07 675724.3 -14.87 0.000 -1.14e+07 -8722669 1516summer | 837246.4 463369.8 1.81 0.071 -71131.5 1745624 | _cons | -1.45e+07 6856226 -2.11 0.035 -2.79e+07 -1023093 ----------------+---------------------------------------------------------------- /sigma | 9168783 202482.9 8771841 9565725 --------------------------------------------------------------------------------- Obs. summary: 4536 left-censored observations at transferam~t<=0 1274 uncensored observations 0 right-censored observations
HTML Code:
. probit transferamount age c.age#c.age careerapps psapps goalsperapps psgoalsperapps previous international cardsperap > ps stadiumsize samecountry championsleague ib1.country ib1.transferwindow Iteration 0: log likelihood = -3056.0106 Iteration 1: log likelihood = -2692.7903 Iteration 2: log likelihood = -2683.9669 Iteration 3: log likelihood = -2683.9465 Iteration 4: log likelihood = -2683.9465 Probit regression Number of obs = 5810 LR chi2(20) = 744.13 Prob > chi2 = 0.0000 Log likelihood = -2683.9465 Pseudo R2 = 0.1217 --------------------------------------------------------------------------------- transferamount | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- age | .0010049 .0637441 0.02 0.987 -.1239312 .125941 | c.age#c.age | -.0002025 .0013131 -0.15 0.877 -.0027761 .0023711 | careerapps | .0002549 .0004689 0.54 0.587 -.0006641 .0011739 psapps | -.0006806 .0024448 -0.28 0.781 -.0054722 .0041111 goalsperapps | .140991 .255453 0.55 0.581 -.3596876 .6416696 psgoalsperapps | -.0751496 .2070351 -0.36 0.717 -.480931 .3306318 previous | .0153565 .0191282 0.80 0.422 -.0221341 .0528472 international | .0360773 .0442479 0.82 0.415 -.0506471 .1228016 cardsperapps | .0306052 .1750035 0.17 0.861 -.3123954 .3736057 stadiumsize | -3.86e-07 1.26e-06 -0.31 0.759 -2.85e-06 2.08e-06 samecountry | -.004094 .0422512 -0.10 0.923 -.0869049 .078717 championsleague | -.0105471 .0477762 -0.22 0.825 -.1041868 .0830926 | country | France | -.0306155 .0659541 -0.46 0.643 -.1598832 .0986522 Germany | .0166127 .0611243 0.27 0.786 -.1031887 .1364141 Italy | .0224424 .0608318 0.37 0.712 -.0967857 .1416706 Spain | .0017338 .0683321 0.03 0.980 -.1321946 .1356622 | transferwindow | 1314winter | -1.171248 .0717567 -16.32 0.000 -1.311889 -1.030608 1415summer | -.048384 .0541585 -0.89 0.372 -.1545327 .0577647 1415winter | -1.194127 .0725387 -16.46 0.000 -1.3363 -1.051954 1516summer | .0627875 .053702 1.17 0.242 -.0424664 .1680414 | _cons | -.4205694 .7712254 -0.55 0.586 -1.932143 1.091005 --------------------------------------------------------------------------------- . margins, dydx(*) atmeans Conditional marginal effects Number of obs = 5810 Model VCE : OIM Expression : Pr(transferamount), predict() dy/dx w.r.t. : age careerapps psapps goalsperapps psgoalsperapps previous international cardsperapps stadiumsize samecountry championsleague 2.country 3.country 4.country 5.country 2.transferwindow 3.transferwindow 4.transferwindow 5.transferwindow at : age = 23.91343 (mean) careerapps = 150.601 (mean) psapps = 26.04251 (mean) goalsperapps = .1436306 (mean) psgoalsper~s = .1474055 (mean) previous = 2.319966 (mean) internatio~l = .5187608 (mean) cardsperapps = .1518223 (mean) stadiumsize = 41566.04 (mean) samecountry = .458864 (mean) championsl~e = .3910499 (mean) 1.country = .2512909 (mean) 2.country = .1528399 (mean) 3.country = .1948365 (mean) 4.country = .2547332 (mean) 5.country = .1462995 (mean) 1.transfer~w = .2 (mean) 2.transfer~w = .2 (mean) 3.transfer~w = .2 (mean) 4.transfer~w = .2 (mean) 5.transfer~w = .2 (mean) --------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- age | -.0022864 .0032603 -0.70 0.483 -.0086764 .0041036 careerapps | .0000671 .0001237 0.54 0.587 -.0001752 .0003095 psapps | -.0001793 .0006446 -0.28 0.781 -.0014426 .0010841 goalsperapps | .0371365 .0673077 0.55 0.581 -.0947842 .1690573 psgoalsperapps | -.0197941 .054553 -0.36 0.717 -.126716 .0871277 previous | .0040449 .0050464 0.80 0.423 -.0058459 .0139356 international | .0095026 .0116371 0.82 0.414 -.0133056 .0323108 cardsperapps | .0080613 .0460875 0.17 0.861 -.0822685 .0983911 stadiumsize | -1.02e-07 3.32e-07 -0.31 0.759 -7.52e-07 5.49e-07 samecountry | -.0010783 .0111281 -0.10 0.923 -.022889 .0207324 championsleague | -.0027781 .0125811 -0.22 0.825 -.0274366 .0218805 | country | France | -.007918 .0170042 -0.47 0.641 -.0412455 .0254096 Germany | .0043908 .0161652 0.27 0.786 -.0272925 .036074 Italy | .0059473 .0161298 0.37 0.712 -.0256666 .0375611 Spain | .0004552 .0179416 0.03 0.980 -.0347098 .0356201 | transferwindow | 1314winter | -.2761472 .0158699 -17.40 0.000 -.3072517 -.2450427 1415summer | -.0173214 .0193865 -0.89 0.372 -.0553182 .0206754 1415winter | -.2785899 .0158151 -17.62 0.000 -.309587 -.2475928 1516summer | .0230297 .0196899 1.17 0.242 -.0155618 .0616212 --------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level. .
Regards,
Arunan
Comment