Hello everyone,
I have conducted a brant test after an ordered logistic regression in order to test for the parallel regression assumption. My main independent variable is foreign_bakgrnd which does not seem to violate the assumption. However, I'm worried about the significant value of all the variables, i.e. "All" with a p<0.05. Should I consider doing mlogit instead or is ologit better in this case? I also conducted other tests which seem to point to ordered logistic regression as the best fit. However, I'm not 100% sure.
Some background information: The dependent variable ranges from 1 to 5 "very good, good, neither good nor bad, bad, very bad," to a proposal "Accept fewer refugees?". Foreign_bakgrnd is the percentage of immigrants in each municipality. There are 50 municipalities(kommun).
Ologit
Mlogit
I have also used the oparallel command:
I also compared the saved model (ologit) to the current model (mlogit):
I have conducted a brant test after an ordered logistic regression in order to test for the parallel regression assumption. My main independent variable is foreign_bakgrnd which does not seem to violate the assumption. However, I'm worried about the significant value of all the variables, i.e. "All" with a p<0.05. Should I consider doing mlogit instead or is ologit better in this case? I also conducted other tests which seem to point to ordered logistic regression as the best fit. However, I'm not 100% sure.
Some background information: The dependent variable ranges from 1 to 5 "very good, good, neither good nor bad, bad, very bad," to a proposal "Accept fewer refugees?". Foreign_bakgrnd is the percentage of immigrants in each municipality. There are 50 municipalities(kommun).
Ologit
Code:
ologit refugee gender age educ income student unemp foreign_bakgrnd tax total_unemp welfare if raised_swe==1 & mom==1 & dad==1 & f > 80a==1 & citizen==1, cluster (kommun) Iteration 0: log pseudolikelihood = -3262.2904 Iteration 1: log pseudolikelihood = -3140.9864 Iteration 2: log pseudolikelihood = -3140.2161 Iteration 3: log pseudolikelihood = -3140.2157 Iteration 4: log pseudolikelihood = -3140.2157 Ordered logistic regression Number of obs = 2035 Wald chi2(10) = 313.20 Prob > chi2 = 0.0000 Log pseudolikelihood = -3140.2157 Pseudo R2 = 0.0374 (Std. Err. adjusted for 50 clusters in kommun) --------------------------------------------------------------------------------- | Robust refugee | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- gender | .3089709 .070089 4.41 0.000 .171599 .4463427 age | .0055836 .0043592 1.28 0.200 -.0029603 .0141275 educ | .471975 .0498627 9.47 0.000 .3742459 .5697041 income | .0187043 .0176838 1.06 0.290 -.0159553 .0533639 student | .7294596 .185481 3.93 0.000 .3659235 1.092996 unemp | .2874827 .2435057 1.18 0.238 -.1897796 .764745 foreign_bakgrnd | .0259353 .0095523 2.72 0.007 .0072131 .0446576 tax | -.0011078 .0067755 -0.16 0.870 -.0143875 .0121719 total_unemp | -.0617319 .0238923 -2.58 0.010 -.10856 -.0149038 welfare | .0026904 .0484414 0.06 0.956 -.0922529 .0976337 ----------------+---------------------------------------------------------------- /cut1 | .6259649 .7343175 -.813271 2.065201 /cut2 | 1.721342 .724796 .3007678 3.141916 /cut3 | 2.781114 .7424679 1.325904 4.236325 /cut4 | 3.80011 .7355121 2.358533 5.241687
Mlogit
Code:
mlogit refugee gender age educ income student unemp foreign_bakgrnd tax total_unemp welfare if raised_swe==1 & mom==1 & dad==1 & f > 80a==1 & citizen==1, cluster (kommun) Iteration 0: log pseudolikelihood = -3262.2904 Iteration 1: log pseudolikelihood = -3118.6774 Iteration 2: log pseudolikelihood = -3114.8747 Iteration 3: log pseudolikelihood = -3114.8613 Iteration 4: log pseudolikelihood = -3114.8613 Multinomial logistic regression Number of obs = 2035 Wald chi2(40) = 1788.08 Prob > chi2 = 0.0000 Log pseudolikelihood = -3114.8613 Pseudo R2 = 0.0452 (Std. Err. adjusted for 50 clusters in kommun) -------------------------------------------------------------------------------------- | Robust refugee | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- _Very_Good | gender | -.394604 .1127504 -3.50 0.000 -.6155907 -.1736173 age | -.010347 .0045848 -2.26 0.024 -.019333 -.001361 educ | -.3645869 .0721144 -5.06 0.000 -.5059286 -.2232452 income | -.0522729 .0287455 -1.82 0.069 -.108613 .0040672 student | -.4549115 .3531302 -1.29 0.198 -1.147034 .2372111 unemp | .0304258 .3571199 0.09 0.932 -.6695163 .7303679 foreign_bakgrnd | .0016004 .0099909 0.16 0.873 -.0179815 .0211823 tax | .0018852 .0105668 0.18 0.858 -.0188254 .0225957 total_unemp | .0154779 .0351648 0.44 0.660 -.0534439 .0843997 welfare | .0490317 .0599628 0.82 0.414 -.0684932 .1665565 _cons | 1.632298 1.059698 1.54 0.123 -.4446714 3.709268 ---------------------+---------------------------------------------------------------- Fairly_Good | gender | -.0450976 .121754 -0.37 0.711 -.2837311 .1935359 age | -.0067947 .0046264 -1.47 0.142 -.0158623 .0022729 educ | -.2249964 .0519674 -4.33 0.000 -.3268507 -.1231422 income | -.0199047 .0257654 -0.77 0.440 -.070404 .0305945 student | -.2329129 .3298539 -0.71 0.480 -.8794146 .4135888 unemp | -.4127772 .4627189 -0.89 0.372 -1.31969 .4941352 foreign_bakgrnd | -.0044638 .0106793 -0.42 0.676 -.0253949 .0164672 tax | .0096151 .0088208 1.09 0.276 -.0076734 .0269036 total_unemp | .006274 .0330595 0.19 0.849 -.0585215 .0710695 welfare | .0407527 .0541683 0.75 0.452 -.0654151 .1469206 _cons | -.0608351 .9518732 -0.06 0.949 -1.926472 1.804802 ---------------------+---------------------------------------------------------------- Neither_good_nor_bad | (base outcome) ---------------------+---------------------------------------------------------------- Fairly_bad | gender | -.0628752 .1013472 -0.62 0.535 -.2615122 .1357617 age | .0040965 .0060997 0.67 0.502 -.0078586 .0160516 educ | .2815299 .084509 3.33 0.001 .1158953 .4471646 income | .0234315 .0260612 0.90 0.369 -.0276474 .0745105 student | .5616208 .2876051 1.95 0.051 -.002075 1.125316 unemp | .0937818 .3774915 0.25 0.804 -.646088 .8336516 foreign_bakgrnd | .0112605 .0156116 0.72 0.471 -.0193376 .0418586 tax | .0125842 .0084345 1.49 0.136 -.0039471 .0291155 total_unemp | -.0368523 .0329919 -1.12 0.264 -.1015153 .0278107 welfare | .0899803 .0785352 1.15 0.252 -.0639458 .2439064 _cons | -2.966431 .9481258 -3.13 0.002 -4.824723 -1.108139 ---------------------+---------------------------------------------------------------- Very_bad | gender | .2793758 .1481659 1.89 0.059 -.011024 .5697756 age | -.0066449 .0054863 -1.21 0.226 -.017398 .0041081 educ | .4074613 .0708812 5.75 0.000 .2685368 .5463859 income | -.0283097 .033077 -0.86 0.392 -.0931394 .0365201 student | .5167056 .3865466 1.34 0.181 -.2409118 1.274323 unemp | .3544362 .4450767 0.80 0.426 -.5178981 1.226771 foreign_bakgrnd | .0511379 .0121621 4.20 0.000 .0273007 .0749752 tax | -.0007457 .0101354 -0.07 0.941 -.0206107 .0191194 total_unemp | -.1032037 .0395097 -2.61 0.009 -.1806413 -.0257661 welfare | .0197273 .0590026 0.33 0.738 -.0959156 .1353702 _cons | -1.737012 1.161006 -1.50 0.135 -4.012543 .538519 --------------------------------------------------------------------------------------
Code:
brant Brant test of parallel regression assumption | chi2 p>chi2 df -----------------+------------------------------ All | 50.52 0.011 30 -----------------+------------------------------ gender | 4.86 0.182 3 age | 8.33 0.040 3 educ | 2.06 0.561 3 income | 5.84 0.119 3 student | 1.57 0.666 3 unemp | 2.25 0.522 3 foreign_bakgrnd | 5.61 0.132 3 tax | 1.82 0.611 3 total_unemp | 1.29 0.732 3 welfare | 1.13 0.769 3 A significant test statistic provides evidence that the parallel regression assumption has been violated.
Code:
oparallel, ic Tests of the parallel regression assumption | Chi2 df P>Chi2 -----------------+---------------------- Wolfe Gould | 44.44 30 0.043 Brant | 50.52 30 0.011 score | 47.37 30 0.023 likelihood ratio | 45.59 30 0.034 Wald | 48.76 30 0.017 Information criteria | ologit gologit difference ------+------------------------------------ AIC | 6308.43 6322.84 -14.41 BIC | 6387.09 6570.05 -182.96
Code:
. fitstat, dif force | Current Saved Difference -------------------------+--------------------------------------- Log-likelihood | Model | -3114.861 -3140.216 25.354 Intercept-only | -3262.290 -3262.290 0.000 -------------------------+--------------------------------------- Chi-square | D (df=1991/2021/-30) | 6229.723 6280.431 -50.709 Wald (df=40/10/30) | 1788.084 313.196 1474.888 p-value | 0.000 0.000 0.010 -------------------------+--------------------------------------- R2 | McFadden | 0.045 0.037 0.008 McFadden (adjusted) | 0.032 0.033 -0.001 Cox-Snell/ML | 0.135 0.113 0.022 Cragg-Uhler/Nagelkerke | 0.141 0.118 0.023 Count | 0.309 0.290 0.019 Count (adjusted) | 0.096 0.071 0.025 -------------------------+--------------------------------------- IC | AIC | 6317.723 6308.431 9.291 AIC divided by N | 3.105 3.100 0.005 BIC (df=44/14/30) | 6564.926 6387.087 177.839 Note: Likelihood-ratio test assumes saved model nested in current model. Difference of 177.839 in BIC provides very strong support for saved model.
Comment