Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Please show your Stata commands and Stata output.
    Surround them with code delimiters to make them readable.

    Comment


    • #17
      Karaca: Approaches #2 and #3 are always guaranteed to be the same: they're the same estimator. As Eric says, you need to show your Stata output for us to say more. I'm pretty sure that, when you do, the estimate of sigma(u) will be zero.

      Comment


      • #18
        Hi Carlo,
        here is what I got after xttest0.

        xttest0

        Breusch and Pagan Lagrangian multiplier test for random effects

        AERY[Reg,t] = Xb + u[Reg] + e[Reg,t]

        Estimated results:
        | Var sd = sqrt(Var)
        ---------+-----------------------------
        AERY | 448.951 21.18846
        e | .8437053 .9185343
        u | 0 0

        Test: Var(u) = 0
        chibar2(01) = 0.00
        Prob > chibar2 = 1.0000


        Comment


        • #19
          Hi Eric and Jeff.
          These are my codes and results.

          Codes;

          . clear all
          . import excel "C:\Users\Asus\Desktop\Sheet666666Ultimate.xls x", sheet("Sheet1")
          > firstrow
          (9 vars, 66 obs)
          . encode Region, gen(Reg)
          . ssc install asdoc
          checking asdoc consistency and verifying not already installed...
          all files already exist and are up to date.
          . asdoc regress AERY MktRF SMB HML RMW CMA Mom, replace
          . tabulate Reg, generate(D)
          . asdoc regress AERY MktRF SMB HML RMW CMA Mom D2 D3 D4 D5 D6, replace
          . xtset Reg Time
          . asdoc xtreg AERY MktRF SMB HML RMW CMA Mom, fe, replace
          . asdoc xtreg AERY MktRF SMB HML RMW CMA Mom, re, replace
          ----------------------------------------------------------------------------------------------------------------
          Results;



          1-)


          asdoc regress AERY MktRF SMB HML RMW CMA Mom, replace

          Source | SS df MS Number of obs = 66
          -------------+---------------------------------- F(6, 59) = 5416.37
          Model | 29128.9313 6 4854.82188 Prob > F = 0.0000
          Residual | 52.8831237 59 .89632413 R-squared = 0.9982
          -------------+---------------------------------- Adj R-squared = 0.9980
          Total | 29181.8144 65 448.950991 Root MSE = .94674

          ------------------------------------------------------------------------------
          AERY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
          -------------+----------------------------------------------------------------
          MktRF | 1.001499 .0081823 122.40 0.000 .9851261 1.017872
          SMB | .4192452 .0171385 24.46 0.000 .3849511 .4535394
          HML | .0470112 .016713 2.81 0.007 .0135686 .0804539
          RMW | .0168759 .0247946 0.68 0.499 -.0327379 .0664897
          CMA | .0038372 .0201636 0.19 0.850 -.0365101 .0441845
          Mom | .0128932 .006925 1.86 0.068 -.0009637 .0267501
          _cons | -.1946927 .1818611 -1.07 0.289 -.5585959 .1692106
          ------------------------------------------------------------------------------
          (note: file Myfile.doc not found)
          Click to Open File: Myfile.doc


          2-)

          . asdoc regress AERY MktRF SMB HML RMW CMA Mom D2 D3 D4 D5 D6, replace

          Source | SS df MS Number of obs = 66
          -------------+---------------------------------- F(11, 54) = 3139.43
          Model | 29136.2543 11 2648.75039 Prob > F = 0.0000
          Residual | 45.5600888 54 .843705347 R-squared = 0.9984
          -------------+---------------------------------- Adj R-squared = 0.9981
          Total | 29181.8144 65 448.950991 Root MSE = .91853

          ------------------------------------------------------------------------------
          AERY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
          -------------+----------------------------------------------------------------
          MktRF | 1.00382 .0084108 119.35 0.000 .9869576 1.020683
          SMB | .4114549 .0188748 21.80 0.000 .3736132 .4492967
          HML | .0545304 .0191644 2.85 0.006 .0161082 .0929526
          RMW | .014417 .0262901 0.55 0.586 -.0382916 .0671256
          CMA | .0029491 .0210127 0.14 0.889 -.039179 .0450771
          Mom | .0134288 .0075123 1.79 0.079 -.0016324 .0284901
          D2 | -.5252351 .3938701 -1.33 0.188 -1.314897 .264427
          D3 | .3736749 .4112653 0.91 0.368 -.4508623 1.198212
          D4 | .3567764 .4165184 0.86 0.395 -.4782927 1.191846
          D5 | .3522308 .4256779 0.83 0.412 -.5012021 1.205664
          D6 | -.2605524 .4363413 -0.60 0.553 -1.135364 .6142594

          _cons | -.2455959 .3246247 -0.76 0.453 -.8964293 .4052375
          ------------------------------------------------------------------------------
          (note: file Myfile.doc not found)
          Click to Open File: Myfile.doc

          3-)

          . asdoc xtreg AERY MktRF SMB HML RMW CMA Mom, fe, replace

          Fixed-effects (within) regression Number of obs = 66
          Group variable: Reg Number of groups = 6

          R-sq: Obs per group:
          within = 0.9984 min = 11
          between = 0.9675 avg = 11.0
          overall = 0.9982 max = 11

          F(6,54) = 5720.94
          corr(u_i, Xb) = -0.0450 Prob > F = 0.0000

          ------------------------------------------------------------------------------
          AERY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
          -------------+----------------------------------------------------------------
          MktRF | 1.00382 .0084108 119.35 0.000 .9869576 1.020683
          SMB | .4114549 .0188748 21.80 0.000 .3736132 .4492967
          HML | .0545304 .0191644 2.85 0.006 .0161082 .0929526
          RMW | .014417 .0262901 0.55 0.586 -.0382916 .0671256
          CMA | .0029491 .0210127 0.14 0.889 -.039179 .0450771
          Mom | .0134288 .0075123 1.79 0.079 -.0016324 .0284901
          _cons | -.1961135 .1790362 -1.10 0.278 -.5550595 .1628325
          -------------+----------------------------------------------------------------
          sigma_u | .37948838
          sigma_e | .91853435
          rho | .14580235 (fraction of variance due to u_i)
          ------------------------------------------------------------------------------
          F test that all u_i=0: F(5, 54) = 1.74 Prob > F = 0.1421
          (note: file Myfile.doc not found)
          Click to Open File: Myfile.doc

          4-)


          . asdoc xtreg AERY MktRF SMB HML RMW CMA Mom, re, replace

          Random-effects GLS regression Number of obs = 66
          Group variable: Reg Number of groups = 6

          R-sq: Obs per group:
          within = 0.9984 min = 11
          between = 0.9709 avg = 11.0
          overall = 0.9982 max = 11

          Wald chi2(6) = 32498.21
          corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

          ------------------------------------------------------------------------------
          AERY | Coef. Std. Err. z P>|z| [95% Conf. Interval]
          -------------+----------------------------------------------------------------
          MktRF | 1.001499 .0081823 122.40 0.000 .9854618 1.017536
          SMB | .4192452 .0171385 24.46 0.000 .3856543 .4528361
          HML | .0470112 .016713 2.81 0.005 .0142544 .0797681
          RMW | .0168759 .0247946 0.68 0.496 -.0317205 .0654723
          CMA | .0038372 .0201636 0.19 0.849 -.0356827 .0433572
          Mom | .0128932 .006925 1.86 0.063 -.0006795 .0264659
          _cons | -.1946927 .1818611 -1.07 0.284 -.5511339 .1617486
          -------------+----------------------------------------------------------------
          sigma_u | 0
          sigma_e | .91853435
          rho | 0 (fraction of variance due to u_i)
          ------------------------------------------------------------------------------
          (note: file Myfile.doc not found)
          Click to Open File: Myfile.doc


          Comment


          • #20
            Karaca:
            hencer, you do not have a panel-wise effect.
            Switch to pooled OLS.
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment


            • #21
              Thank you Carlo.
              But when I look at my data set, it looks like i do have cross-sectional and time series variation. it just does not make sense for me. Would you please little bit extend your explanation?

              Comment


              • #22
                I disagree with Carlo, for reasons I will expound upon tomorrow. Briefly, getting a negative estimate for sigma_u does not mean there’s no heterogeneity. It means that the composite error has negative serial correlation.

                Comment


                • #23
                  Hi Jeff. Is having same coefficients for both Pooled OLS and Random effects models a problem or it is a nature of data set? if it is a problem, is there anything that I can do to fix it?

                  Comment


                  • #24
                    Karaca: Several comments. First, as a general rule, whenever the sigma_u (Stata notation) is zero, POLS and RE are identical. It's the same estimator in that case. This is not a deep point. Please look up a book on panel data to confirm this. An estimate of zero occurs when there is negative serial correlation in the composite error term. In Stata's notation, this is v(i,t) = u(i) + e(i,t). The RE estimator goes way back, and it was always assumed that e(i,t) had no serial correlation. In that case, the pairwise covariance between v(i,t) and v(i,s) for t and s different is sigma_u_square. That's what the xttest0 is based on. But this is an outdated way of thinking. There is absolutely no reason to expect e(i,t) to not have serial correlation. And when that serial correlation is strongly negative, that can cause v(i,t) to have negative serial correlation. That means sigma_u will be estimated to be zero, and xttest0 will return a p-value equal to one. But that does not mean c(i) is not present. The Breusch-Pagan test is based on a very restrictive set of assumptions.

                    So, the general point is that POLS = RE when sigma_u = 0.

                    A specific point is: You only have N = 6, which means you shouldn't be trying to use RE, anyway. You need to look at an econometrics book on panel data. The RE estimator is justified with large N asymptotics, and N = 6 does not cut it.

                    With N = 6 and T = 11 you shouldn't be doing anything beyond basic regression. Including fixed effects for the 6 cross section units changes almost nothing. You could also put in year fixed effects, but you don't have a very large N, so these are imprecisely estimated. I'd report POLS and show that adding the five dummies changes very little from a practical perspective.

                    Comment


                    • #25
                      Thank you Jeff for clear explanation.
                      I am working from Gujarati and Wooldridge books but could not see anything related "N" and "T".
                      I will take a look again

                      Comment


                      • #26
                        You should look at my MIT Press book.

                        Comment


                        • #27
                          I will look at it. Thank you again

                          Comment


                          • #28
                            Hello everyone,

                            I have a problem similar to the one described by Jeff and Stefano. I'm trying to estimate the effect of different forms of infrastructure on GDP growth for a panel sample of 24 cities over 21 years. The model is specified in per capita terms and includes, as explanatory variables, the interaction between the infrastructure of each type and the city.

                            The results of the RE and Pool OLS models are exactly the same. I'm uncertain whether this is a data-related problem or what kind of correction I should apply.

                            Pool OLS

                            Code:
                            regress lnY ln_K ln_khum $xlist $infr b13.id#c.( $infr ) , vce(cluster id)
                            Code:
                            Linear regression                               Number of obs     =        504
                                                                            F(2, 23)          =          .
                                                                            Prob > F          =          .
                                                                            R-squared         =     0.9971
                                                                            Root MSE          =       .078
                            
                                                                  (Std. Err. adjusted for 24 clusters in id)
                            --------------------------------------------------------------------------------
                                           |               Robust
                                       lnY |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            ---------------+----------------------------------------------------------------
                                      ln_K |   .0392785    .031809     1.23   0.229    -.0265235    .1050806
                                   ln_khum |   .0609317    .039548     1.54   0.137    -.0208796    .1427431
                                 ln_lineas |   .0382541   .0365162     1.05   0.306    -.0372854    .1137936
                                  ln_poten |   .3309151   .0256899    12.88   0.000     .2777714    .3840588
                                     ln_km |    -.02535   .0245589    -1.03   0.313     -.076154    .0254539
                                  ln_salud |   .0660992   .0018572    35.59   0.000     .0622574     .069941
                                    ln_edu |   .4252657   .0995293     4.27   0.000     .2193736    .6311578
                                           |
                            id#c.ln_lineas |
                                 Amazonas  |    .065404   .0442473     1.48   0.153    -.0261285    .1569365
                                 Apurímac  |   .0946574   .0243155     3.89   0.001      .044357    .1449579
                                 Arequipa  |   .1536096   .0417419     3.68   0.001       .06726    .2399593
                                 Ayacucho  |   .0669445    .037277     1.80   0.086    -.0101688    .1440578
                                Cajamarca  |  -.0573588   .0232117    -2.47   0.021    -.1053758   -.0093419
                                    Cusco  |   .1397357   .0432859     3.23   0.004     .0501919    .2292794
                             Huancavelica  |  -.0613288   .0132292    -4.64   0.000    -.0886956   -.0339621
                                  Huánuco  |   .0118944   .0528762     0.22   0.824    -.0974885    .1212772
                                      Ica  |   .1273962   .0487523     2.61   0.016     .0265444    .2282481
                                    Junín  |   .0615422   .0411515     1.50   0.148    -.0235862    .1466706
                             La Libertad   |   .1186316   .0398124     2.98   0.007     .0362733    .2009898
                               Lambayeque  |   .0322334   .0442022     0.73   0.473    -.0592057    .1236726
                                   Loreto  |  -.0145669   .0405126    -0.36   0.722    -.0983736    .0692398
                            Madre de Dios  |   .0476139   .0486835     0.98   0.338    -.0530955    .1483233
                                 Moquegua  |  -.0383305    .036807    -1.04   0.309    -.1144716    .0378107
                                    Pasco  |  -.0778414   .0303786    -2.56   0.017    -.1406844   -.0149984
                                   Piura   |   .1136678      .0538     2.11   0.046     .0023739    .2249617
                                     Puno  |   .0162516   .0349408     0.47   0.646    -.0560289     .088532
                               San Martín  |   .0757022   .0364599     2.08   0.049     .0002792    .1511253
                                    Tacna  |   .0603895    .042311     1.43   0.167    -.0271375    .1479165
                                   Tumbes  |   .0996731   .0568279     1.75   0.093    -.0178843    .2172305
                                  Ucayali  |   .0441944   .0386813     1.14   0.265    -.0358241    .1242128
                                   Áncash  |   .0028638   .0375553     0.08   0.940    -.0748253    .0805529
                                           |
                             id#c.ln_poten |
                                 Amazonas  |  -.1832356   .0544154    -3.37   0.003    -.2958025   -.0706688
                                 Apurímac  |  -2.168464   .0621639   -34.88   0.000    -2.297059   -2.039868
                                 Arequipa  |  -.0914937   .0327226    -2.80   0.010    -.1591856   -.0238018
                                 Ayacucho  |  -.2981789   .0463234    -6.44   0.000    -.3940061   -.2023518
                                Cajamarca  |  -.7506572   .0192499   -39.00   0.000    -.7904788   -.7108357
                                    Cusco  |  -.3565641   .0288598   -12.36   0.000    -.4162651   -.2968631
                             Huancavelica  |   -.269121   .0617575    -4.36   0.000    -.3968762   -.1413659
                                  Huánuco  |  -.2810383   .0450281    -6.24   0.000    -.3741861   -.1878905
                                      Ica  |  -.1507203   .0362095    -4.16   0.000    -.2256254   -.0758151
                                    Junín  |   .4341032   .0194841    22.28   0.000     .3937972    .4744092
                             La Libertad   |  -.3411277     .04063    -8.40   0.000    -.4251774   -.2570781
                               Lambayeque  |  -.2703864   .0425167    -6.36   0.000    -.3583389   -.1824339
                                   Loreto  |  -.2914384   .0549464    -5.30   0.000    -.4051037   -.1777731
                            Madre de Dios  |  -.3801749   .0494981    -7.68   0.000    -.4825696   -.2777801
                                 Moquegua  |  -.4167558   .0374018   -11.14   0.000    -.4941275   -.3393842
                                    Pasco  |  -.2483541   .0637836    -3.89   0.001    -.3803004   -.1164077
                                   Piura   |  -.1107411   .0507632    -2.18   0.040    -.2157528   -.0057294
                                     Puno  |  -.2495404   .0329792    -7.57   0.000     -.317763   -.1813178
                               San Martín  |  -.4251851   .0549771    -7.73   0.000    -.5389138   -.3114564
                                    Tacna  |  -.1556492   .0873299    -1.78   0.088    -.3363049    .0250065
                                   Tumbes  |  -.9941327   .1344387    -7.39   0.000     -1.27224    -.716025
                                  Ucayali  |  -.2154607   .0855361    -2.52   0.019    -.3924055   -.0385158
                                   Áncash  |  -.0080315   .0189589    -0.42   0.676     -.047251    .0311879
                                           |
                                id#c.ln_km |
                                 Amazonas  |    .182208   .0396818     4.59   0.000     .1001199    .2642962
                                 Apurímac  |   1.151643   .0461113    24.98   0.000     1.056255    1.247032
                                 Arequipa  |   .2434194   .0238159    10.22   0.000     .1941525    .2926864
                                 Ayacucho  |   .2697952   .0278456     9.69   0.000     .2121921    .3273982
                                Cajamarca  |  -.1364695   .0189734    -7.19   0.000    -.1757189   -.0972202
                                    Cusco  |   .3099537   .0380797     8.14   0.000     .2311798    .3887276
                             Huancavelica  |   .2031439   .0940441     2.16   0.041     .0085989     .397689
                                  Huánuco  |   .1726641   .0322439     5.35   0.000     .1059626    .2393656
                                      Ica  |   .2686949   .0477181     5.63   0.000     .1699824    .3674074
                                    Junín  |   .3583153   .0198413    18.06   0.000     .3172704    .3993602
                             La Libertad   |   .1886441   .0397651     4.74   0.000     .1063837    .2709045
                               Lambayeque  |   .1962144   .0427921     4.59   0.000     .1076923    .2847365
                                   Loreto  |   .0294425   .0234186     1.26   0.221    -.0190026    .0778875
                            Madre de Dios  |   .0202542   .0276675     0.73   0.472    -.0369803    .0774887
                                 Moquegua  |  -.3406279   .0110701   -30.77   0.000    -.3635282   -.3177275
                                    Pasco  |  -.3004189   .0127116   -23.63   0.000    -.3267149   -.2741228
                                   Piura   |   .0469183   .0258608     1.81   0.083    -.0065788    .1004154
                                     Puno  |   .0943043   .0274078     3.44   0.002     .0376068    .1510017
                               San Martín  |   .1716453   .0278115     6.17   0.000     .1141128    .2291779
                                    Tacna  |   .0519716   .0200243     2.60   0.016     .0105482     .093395
                                   Tumbes  |   .2141541   .0580996     3.69   0.001     .0939659    .3343423
                                  Ucayali  |     .06505   .0201189     3.23   0.004     .0234308    .1066693
                                   Áncash  |  -.1433421   .0222188    -6.45   0.000    -.1893052   -.0973789
                                           |
                             id#c.ln_salud |
                                 Amazonas  |  -.1354905   .0692011    -1.96   0.062    -.2786439    .0076629
                                 Apurímac  |   .3345131   .0114564    29.20   0.000     .3108137    .3582125
                                 Arequipa  |  -.0709841   .0048994   -14.49   0.000    -.0811192    -.060849
                                 Ayacucho  |   .0892449   .0208987     4.27   0.000     .0460127    .1324771
                                Cajamarca  |   .0908407   .0235809     3.85   0.001     .0420598    .1396216
                                    Cusco  |  -.3182929   .0214596   -14.83   0.000    -.3626855   -.2739002
                             Huancavelica  |   -.182198   .0715461    -2.55   0.018    -.3302024   -.0341935
                                  Huánuco  |  -.1235633   .0291889    -4.23   0.000    -.1839452   -.0631815
                                      Ica  |  -.0758639   .0180329    -4.21   0.000    -.1131677     -.03856
                                    Junín  |  -.0447417   .0023256   -19.24   0.000    -.0495526   -.0399308
                             La Libertad   |  -.0805698   .0035989   -22.39   0.000    -.0880146   -.0731249
                               Lambayeque  |  -.0328874   .0141035    -2.33   0.029    -.0620626   -.0037122
                                   Loreto  |    .224672   .0546491     4.11   0.000     .1116216    .3377223
                            Madre de Dios  |   .1483617   .0090117    16.46   0.000     .1297196    .1670037
                                 Moquegua  |  -.0404466   .0015996   -25.29   0.000    -.0437557   -.0371376
                                    Pasco  |   .3263746   .0407563     8.01   0.000     .2420638    .4106854
                                   Piura   |   -.048961   .0073588    -6.65   0.000    -.0641838   -.0337383
                                     Puno  |  -.0980472    .013065    -7.50   0.000    -.1250742   -.0710202
                               San Martín  |  -.3521583   .0294337   -11.96   0.000    -.4130466   -.2912701
                                    Tacna  |   .0726015   .0458199     1.58   0.127    -.0221842    .1673871
                                   Tumbes  |     .25387   .0332515     7.63   0.000     .1850841     .322656
                                  Ucayali  |   -.036994   .0163216    -2.27   0.033    -.0707578   -.0032302
                                   Áncash  |  -.1694466   .0194702    -8.70   0.000    -.2097237   -.1291694
                                           |
                               id#c.ln_edu |
                                 Amazonas  |   -.184267   .1122227    -1.64   0.114    -.4164174    .0478835
                                 Apurímac  |  -1.053295   .0687137   -15.33   0.000     -1.19544     -.91115
                                 Arequipa  |  -.2254419   .1099798    -2.05   0.052    -.4529525    .0020687
                                 Ayacucho  |  -.3767622   .1046721    -3.60   0.002    -.5932928   -.1602315
                                Cajamarca  |    .059142   .0808467     0.73   0.472    -.1081023    .2263862
                                    Cusco  |  -.1109195   .1143567    -0.97   0.342    -.3474844    .1256454
                             Huancavelica  |  -.1753583   .0811308    -2.16   0.041    -.3431903   -.0075264
                                  Huánuco  |  -.0661685   .1333885    -0.50   0.625    -.3421036    .2097667
                                      Ica  |  -.1840886   .1251192    -1.47   0.155    -.4429173    .0747401
                                    Junín  |  -.4483017   .1008563    -4.44   0.000    -.6569388   -.2396646
                             La Libertad   |  -.2187196   .1093808    -2.00   0.057    -.4449909    .0075518
                               Lambayeque  |  -.1633516   .1259868    -1.30   0.208    -.4239752     .097272
                                   Loreto  |  -.6967474   .1433866    -4.86   0.000    -.9933652   -.4001295
                            Madre de Dios  |  -.6144027   .1408009    -4.36   0.000    -.9056716   -.3231338
                                 Moquegua  |   .3102817   .1202008     2.58   0.017     .0616274    .5589361
                                    Pasco  |  -.2350489   .1042438    -2.25   0.034    -.4506936   -.0194041
                                   Piura   |  -.2424484   .1389755    -1.74   0.094    -.5299412    .0450444
                                     Puno  |  -.2188596   .0964796    -2.27   0.033    -.4184429   -.0192763
                               San Martín  |  -.2437405   .1024754    -2.38   0.026     -.455727    -.031754
                                    Tacna  |  -.2268031   .1335765    -1.70   0.103    -.5031272    .0495209
                                   Tumbes  |  -.2946518   .1386928    -2.12   0.045    -.5815596    -.007744
                                  Ucayali  |  -.1751879    .115516    -1.52   0.143     -.414151    .0637752
                                   Áncash  |   -.060665   .0900927    -0.67   0.507     -.247036     .125706
                                           |
                                     _cons |   8.011457   .3735159    21.45   0.000      7.23878    8.784133
                            --------------------------------------------------------------------------------
                            Random Effects

                            Code:
                            xtreg lnY ln_K ln_khum $xlist $infr b13.id#c.( $infr ) , re theta vce(robust)
                            Code:
                            Random-effects GLS regression                   Number of obs     =        504
                            Group variable: id                              Number of groups  =         24
                            
                            R-sq:                                           Obs per group:
                                 within  = 0.9118                                         min =         21
                                 between = 1.0000                                         avg =       21.0
                                 overall = 0.9971                                         max =         21
                            
                                                                            Wald chi2(3)      =          .
                            corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =          .
                            theta          = 0
                            
                                                                  (Std. Err. adjusted for 24 clusters in id)
                            --------------------------------------------------------------------------------
                                           |               Robust
                                       lnY |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                            ---------------+----------------------------------------------------------------
                                      ln_K |   .0392785    .031809     1.23   0.217    -.0230661    .1016231
                                   ln_khum |   .0609317    .039548     1.54   0.123    -.0165809    .1384444
                                 ln_lineas |   .0382541   .0365162     1.05   0.295    -.0333163    .1098245
                                  ln_poten |   .3309151   .0256899    12.88   0.000     .2805638    .3812665
                                     ln_km |    -.02535   .0245589    -1.03   0.302    -.0734846    .0227845
                                  ln_salud |   .0660992   .0018572    35.59   0.000     .0624593    .0697392
                                    ln_edu |   .4252657   .0995293     4.27   0.000     .2301918    .6203396
                                           |
                            id#c.ln_lineas |
                                 Amazonas  |    .065404   .0442473     1.48   0.139    -.0213191    .1521271
                                 Apurímac  |   .0946574   .0243155     3.89   0.000     .0469999    .1423149
                                 Arequipa  |   .1536096   .0417419     3.68   0.000     .0717971    .2354222
                                 Ayacucho  |   .0669445    .037277     1.80   0.073     -.006117     .140006
                                Cajamarca  |  -.0573588   .0232117    -2.47   0.013    -.1028528   -.0118648
                                    Cusco  |   .1397357   .0432859     3.23   0.001     .0548968    .2245745
                             Huancavelica  |  -.0613288   .0132292    -4.64   0.000    -.0872577      -.0354
                                  Huánuco  |   .0118944   .0528762     0.22   0.822    -.0917412    .1155299
                                      Ica  |   .1273962   .0487523     2.61   0.009     .0318434     .222949
                                    Junín  |   .0615422   .0411515     1.50   0.135    -.0191133    .1421977
                             La Libertad   |   .1186316   .0398124     2.98   0.003     .0406006    .1966625
                               Lambayeque  |   .0322334   .0442022     0.73   0.466    -.0544012    .1188681
                                   Loreto  |  -.0145669   .0405126    -0.36   0.719    -.0939701    .0648364
                            Madre de Dios  |   .0476139   .0486835     0.98   0.328     -.047804    .1430317
                                 Moquegua  |  -.0383305    .036807    -1.04   0.298    -.1104709      .03381
                                    Pasco  |  -.0778414   .0303786    -2.56   0.010    -.1373824   -.0183004
                                   Piura   |   .1136678      .0538     2.11   0.035     .0082217     .219114
                                     Puno  |   .0162516   .0349408     0.47   0.642    -.0522311    .0847342
                               San Martín  |   .0757022   .0364599     2.08   0.038     .0042421    .1471623
                                    Tacna  |   .0603895    .042311     1.43   0.154    -.0225386    .1433176
                                   Tumbes  |   .0996731   .0568279     1.75   0.079    -.0117075    .2110536
                                  Ucayali  |   .0441944   .0386813     1.14   0.253    -.0316197    .1200084
                                   Áncash  |   .0028638   .0375553     0.08   0.939    -.0707433    .0764709
                                           |
                             id#c.ln_poten |
                                 Amazonas  |  -.1832356   .0544154    -3.37   0.001    -.2898879   -.0765834
                                 Apurímac  |  -2.168464   .0621639   -34.88   0.000    -2.290303   -2.046624
                                 Arequipa  |  -.0914937   .0327226    -2.80   0.005    -.1556288   -.0273585
                                 Ayacucho  |  -.2981789   .0463234    -6.44   0.000    -.3889711   -.2073868
                                Cajamarca  |  -.7506572   .0192499   -39.00   0.000    -.7883864   -.7129281
                                    Cusco  |  -.3565641   .0288598   -12.36   0.000    -.4131282         -.3
                             Huancavelica  |   -.269121   .0617575    -4.36   0.000    -.3901635   -.1480786
                                  Huánuco  |  -.2810383   .0450281    -6.24   0.000    -.3692918   -.1927848
                                      Ica  |  -.1507203   .0362095    -4.16   0.000    -.2216896   -.0797509
                                    Junín  |   .4341032   .0194841    22.28   0.000      .395915    .4722914
                             La Libertad   |  -.3411277     .04063    -8.40   0.000    -.4207612   -.2614943
                               Lambayeque  |  -.2703864   .0425167    -6.36   0.000    -.3537176   -.1870552
                                   Loreto  |  -.2914384   .0549464    -5.30   0.000    -.3991313   -.1837454
                            Madre de Dios  |  -.3801749   .0494981    -7.68   0.000    -.4771895   -.2831603
                                 Moquegua  |  -.4167558   .0374018   -11.14   0.000    -.4900621   -.3434496
                                    Pasco  |  -.2483541   .0637836    -3.89   0.000    -.3733675   -.1233406
                                   Piura   |  -.1107411   .0507632    -2.18   0.029    -.2102351    -.011247
                                     Puno  |  -.2495404   .0329792    -7.57   0.000    -.3141783   -.1849024
                               San Martín  |  -.4251851   .0549771    -7.73   0.000    -.5329382   -.3174321
                                    Tacna  |  -.1556492   .0873299    -1.78   0.075    -.3268127    .0155143
                                   Tumbes  |  -.9941327   .1344387    -7.39   0.000    -1.257628   -.7306376
                                  Ucayali  |  -.2154607   .0855361    -2.52   0.012    -.3831082   -.0478131
                                   Áncash  |  -.0080315   .0189589    -0.42   0.672    -.0451903    .0291272
                                           |
                                id#c.ln_km |
                                 Amazonas  |    .182208   .0396818     4.59   0.000      .104433     .259983
                                 Apurímac  |   1.151643   .0461113    24.98   0.000     1.061267     1.24202
                                 Arequipa  |   .2434194   .0238159    10.22   0.000     .1967411    .2900977
                                 Ayacucho  |   .2697952   .0278456     9.69   0.000     .2152187    .3243716
                                Cajamarca  |  -.1364695   .0189734    -7.19   0.000    -.1736566   -.0992824
                                    Cusco  |   .3099537   .0380797     8.14   0.000     .2353188    .3845886
                             Huancavelica  |   .2031439   .0940441     2.16   0.031     .0188209     .387467
                                  Huánuco  |   .1726641   .0322439     5.35   0.000     .1094673    .2358609
                                      Ica  |   .2686949   .0477181     5.63   0.000     .1751691    .3622207
                                    Junín  |   .3583153   .0198413    18.06   0.000     .3194271    .3972036
                             La Libertad   |   .1886441   .0397651     4.74   0.000     .1107059    .2665823
                               Lambayeque  |   .1962144   .0427921     4.59   0.000     .1123435    .2800853
                                   Loreto  |   .0294425   .0234186     1.26   0.209    -.0164571     .075342
                            Madre de Dios  |   .0202542   .0276675     0.73   0.464    -.0339731    .0744814
                                 Moquegua  |  -.3406279   .0110701   -30.77   0.000    -.3623249   -.3189308
                                    Pasco  |  -.3004189   .0127116   -23.63   0.000    -.3253332   -.2755045
                                   Piura   |   .0469183   .0258608     1.81   0.070    -.0037679    .0976045
                                     Puno  |   .0943043   .0274078     3.44   0.001     .0405859    .1480227
                               San Martín  |   .1716453   .0278115     6.17   0.000     .1171357     .226155
                                    Tacna  |   .0519716   .0200243     2.60   0.009     .0127247    .0912185
                                   Tumbes  |   .2141541   .0580996     3.69   0.000      .100281    .3280273
                                  Ucayali  |     .06505   .0201189     3.23   0.001     .0256176    .1044825
                                   Áncash  |  -.1433421   .0222188    -6.45   0.000    -.1868902   -.0997939
                                           |
                             id#c.ln_salud |
                                 Amazonas  |  -.1354905   .0692011    -1.96   0.050    -.2711222    .0001412
                                 Apurímac  |   .3345131   .0114564    29.20   0.000      .312059    .3569672
                                 Arequipa  |  -.0709841   .0048994   -14.49   0.000    -.0805867   -.0613815
                                 Ayacucho  |   .0892449   .0208987     4.27   0.000     .0482842    .1302056
                                Cajamarca  |   .0908407   .0235809     3.85   0.000     .0446229    .1370585
                                    Cusco  |  -.3182929   .0214596   -14.83   0.000     -.360353   -.2762327
                             Huancavelica  |   -.182198   .0715461    -2.55   0.011    -.3224258   -.0419701
                                  Huánuco  |  -.1235633   .0291889    -4.23   0.000    -.1807726   -.0663541
                                      Ica  |  -.0758639   .0180329    -4.21   0.000    -.1112076   -.0405201
                                    Junín  |  -.0447417   .0023256   -19.24   0.000    -.0492998   -.0401836
                             La Libertad   |  -.0805698   .0035989   -22.39   0.000    -.0876234   -.0735161
                               Lambayeque  |  -.0328874   .0141035    -2.33   0.020    -.0605297   -.0052451
                                   Loreto  |    .224672   .0546491     4.11   0.000     .1175616    .3317823
                            Madre de Dios  |   .1483617   .0090117    16.46   0.000     .1306991    .1660242
                                 Moquegua  |  -.0404466   .0015996   -25.29   0.000    -.0435818   -.0373114
                                    Pasco  |   .3263746   .0407563     8.01   0.000     .2464937    .4062555
                                   Piura   |   -.048961   .0073588    -6.65   0.000     -.063384   -.0345381
                                     Puno  |  -.0980472    .013065    -7.50   0.000    -.1236541   -.0724402
                               San Martín  |  -.3521583   .0294337   -11.96   0.000    -.4098474   -.2944693
                                    Tacna  |   .0726015   .0458199     1.58   0.113    -.0172039    .1624068
                                   Tumbes  |     .25387   .0332515     7.63   0.000     .1886983    .3190418
                                  Ucayali  |   -.036994   .0163216    -2.27   0.023    -.0689838   -.0050043
                                   Áncash  |  -.1694466   .0194702    -8.70   0.000    -.2076075   -.1312857
                                           |
                               id#c.ln_edu |
                                 Amazonas  |   -.184267   .1122227    -1.64   0.101    -.4042195    .0356856
                                 Apurímac  |  -1.053295   .0687137   -15.33   0.000    -1.187972   -.9186187
                                 Arequipa  |  -.2254419   .1099798    -2.05   0.040    -.4409983   -.0098854
                                 Ayacucho  |  -.3767622   .1046721    -3.60   0.000    -.5819156   -.1716087
                                Cajamarca  |    .059142   .0808467     0.73   0.464    -.0993147    .2175987
                                    Cusco  |  -.1109195   .1143567    -0.97   0.332    -.3350545    .1132155
                             Huancavelica  |  -.1753583   .0811308    -2.16   0.031    -.3343719   -.0163448
                                  Huánuco  |  -.0661685   .1333885    -0.50   0.620    -.3276052    .1952682
                                      Ica  |  -.1840886   .1251192    -1.47   0.141    -.4293177    .0611404
                                    Junín  |  -.4483017   .1008563    -4.44   0.000    -.6459764    -.250627
                             La Libertad   |  -.2187196   .1093808    -2.00   0.046    -.4331019   -.0043372
                               Lambayeque  |  -.1633516   .1259868    -1.30   0.195    -.4102812     .083578
                                   Loreto  |  -.6967474   .1433866    -4.86   0.000      -.97778   -.4157147
                            Madre de Dios  |  -.6144027   .1408009    -4.36   0.000    -.8903674    -.338438
                                 Moquegua  |   .3102817   .1202008     2.58   0.010     .0746924     .545871
                                    Pasco  |  -.2350489   .1042438    -2.25   0.024     -.439363   -.0307348
                                   Piura   |  -.2424484   .1389755    -1.74   0.081    -.5148354    .0299387
                                     Puno  |  -.2188596   .0964796    -2.27   0.023    -.4079562    -.029763
                               San Martín  |  -.2437405   .1024754    -2.38   0.017    -.4445885   -.0428924
                                    Tacna  |  -.2268031   .1335765    -1.70   0.090    -.4886082     .035002
                                   Tumbes  |  -.2946518   .1386928    -2.12   0.034    -.5664846    -.022819
                                  Ucayali  |  -.1751879    .115516    -1.52   0.129    -.4015951    .0512193
                                   Áncash  |   -.060665   .0900927    -0.67   0.501    -.2372435    .1159135
                                           |
                                     _cons |   8.011457   .3735159    21.45   0.000     7.279379    8.743534
                            ---------------+----------------------------------------------------------------
                                   sigma_u |          0
                                   sigma_e |  .07397206
                                       rho |          0   (fraction of variance due to u_i)
                            --------------------------------------------------------------------------------

                            Comment


                            • #29
                              Sam:
                              you actualy have a pooled OLS with no panel-wise effect (did you run -xttest0- after -xtreg,re-?).
                              That said, I'd go with a more parsimonius model and see if the sitation still remains the same.
                              Kind regards,
                              Carlo
                              (Stata 19.0)

                              Comment

                              Working...
                              X