Dear Stata members, it is nice to join you, fellows.
I have the following results in stata. Actually, I wanted to bootstrap marginal effects for my model and did the following steps. But I am not sure the marginals, dydx(*) commands are really referring to the bootstrapped samples here (the last command : .margins, dydx(*)). I need your help,fellows?
. probit immig HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
Iteration 0: log likelihood = -5918.8745
Iteration 1: log likelihood = -5372.6804
Iteration 2: log likelihood = -5348.3457
Iteration 3: log likelihood = -5348.2508
Iteration 4: log likelihood = -5348.2508
Probit regression Number of obs = 24635
LR chi2(12) = 1141.25
Prob > chi2 = 0.0000
Log likelihood = -5348.2508 Pseudo R2 = 0.0964
------------------------------------------------------------------------------
immig | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.1591801 .0105724 -15.06 0.000 -.1799015 -.1384586
agesq | -.0003139 .0000206 -15.26 0.000 -.0003542 -.0002736
child | .0394447 .0170369 2.32 0.021 .006053 .0728364
lnmine | .022301 .0057576 3.87 0.000 .0110163 .0335856
marrge | .2952087 .0332481 8.88 0.000 .2300437 .3603738
EDU | .2187549 .0282795 7.74 0.000 .1633281 .2741818
EMP | -.1023748 .029243 -3.50 0.000 -.15969 -.0450597
sharepast | -1.328398 .1331313 -9.98 0.000 -1.58933 -1.067465
east | .1624754 .0628192 2.59 0.010 .0393521 .2855987
khangai | .2025574 .0522529 3.88 0.000 .1001437 .3049711
central | -.1739832 .0576205 -3.02 0.003 -.2869174 -.0610491
UB | .2516309 .0518075 4.86 0.000 .15009 .3531718
_cons | -.8136612 .0686039 -11.86 0.000 -.9481223 -.6792001
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 24635
Model VCE : OIM
Expression : Pr(immig), predict()
dy/dx w.r.t. : HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.0184734 .00125 -14.78 0.000 -.0209233 -.0160235
agesq | -.0000364 2.43e-06 -15.00 0.000 -.0000412 -.0000317
child | .0045777 .0019779 2.31 0.021 .000701 .0084544
lnmine | .0025881 .0006689 3.87 0.000 .0012772 .003899
marrge | .03426 .0038809 8.83 0.000 .0266536 .0418664
EDU | .0253873 .0032944 7.71 0.000 .0189304 .0318441
EMP | -.0118809 .0033961 -3.50 0.000 -.0185371 -.0052248
sharepast | -.1541651 .0155968 -9.88 0.000 -.1847342 -.123596
east | .0188558 .0072931 2.59 0.010 .0045617 .03315
khangai | .0235075 .0060732 3.87 0.000 .0116042 .0354108
central | -.0201913 .0066923 -3.02 0.003 -.033308 -.0070747
UB | .0292026 .0060213 4.85 0.000 .017401 .0410042
------------------------------------------------------------------------------
. probit immig HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB, vce(bootstrap, reps(500))
(running probit on estimation sample)
Bootstrap replications (500)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
Probit regression Number of obs = 24635
Replications = 500
Wald chi2(12) = 751.94
Prob > chi2 = 0.0000
Log likelihood = -5348.2508 Pseudo R2 = 0.0964
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
immig | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.1591801 .0126795 -12.55 0.000 -.1840314 -.1343288
agesq | -.0003139 .0000214 -14.65 0.000 -.0003559 -.0002719
child | .0394447 .0196725 2.01 0.045 .0008872 .0780022
lnmine | .022301 .0061473 3.63 0.000 .0102525 .0343495
marrge | .2952087 .0366813 8.05 0.000 .2233147 .3671028
EDU | .2187549 .0279829 7.82 0.000 .1639094 .2736005
EMP | -.1023748 .0280807 -3.65 0.000 -.1574119 -.0473377
sharepast | -1.328398 .1318705 -10.07 0.000 -1.586859 -1.069936
east | .1624754 .0665041 2.44 0.015 .0321298 .292821
khangai | .2025574 .0489888 4.13 0.000 .1065411 .2985737
central | -.1739832 .0597339 -2.91 0.004 -.2910596 -.0569068
UB | .2516309 .0510033 4.93 0.000 .1516661 .3515956
_cons | -.8136612 .0713887 -11.40 0.000 -.9535805 -.6737419
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 24635
Model VCE : Bootstrap
Expression : Pr(immig), predict()
dy/dx w.r.t. : HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.0184734 .0014711 -12.56 0.000 -.0213568 -.01559
agesq | -.0000364 2.49e-06 -14.65 0.000 -.0000413 -.0000316
child | .0045777 .0022822 2.01 0.045 .0001046 .0090508
lnmine | .0025881 .0007119 3.64 0.000 .0011928 .0039834
marrge | .03426 .0042176 8.12 0.000 .0259937 .0425263
EDU | .0253873 .0033093 7.67 0.000 .0189011 .0318734
EMP | -.0118809 .0032721 -3.63 0.000 -.0182941 -.0054678
sharepast | -.1541651 .0151716 -10.16 0.000 -.1839008 -.1244294
east | .0188558 .0077445 2.43 0.015 .0036769 .0340347
khangai | .0235075 .005675 4.14 0.000 .0123848 .0346302
central | -.0201913 .0069341 -2.91 0.004 -.033782 -.0066007
UB | .0292026 .0059231 4.93 0.000 .0175935 .0408117
------------------------------------------------------------------------------
.
I have the following results in stata. Actually, I wanted to bootstrap marginal effects for my model and did the following steps. But I am not sure the marginals, dydx(*) commands are really referring to the bootstrapped samples here (the last command : .margins, dydx(*)). I need your help,fellows?
. probit immig HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
Iteration 0: log likelihood = -5918.8745
Iteration 1: log likelihood = -5372.6804
Iteration 2: log likelihood = -5348.3457
Iteration 3: log likelihood = -5348.2508
Iteration 4: log likelihood = -5348.2508
Probit regression Number of obs = 24635
LR chi2(12) = 1141.25
Prob > chi2 = 0.0000
Log likelihood = -5348.2508 Pseudo R2 = 0.0964
------------------------------------------------------------------------------
immig | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.1591801 .0105724 -15.06 0.000 -.1799015 -.1384586
agesq | -.0003139 .0000206 -15.26 0.000 -.0003542 -.0002736
child | .0394447 .0170369 2.32 0.021 .006053 .0728364
lnmine | .022301 .0057576 3.87 0.000 .0110163 .0335856
marrge | .2952087 .0332481 8.88 0.000 .2300437 .3603738
EDU | .2187549 .0282795 7.74 0.000 .1633281 .2741818
EMP | -.1023748 .029243 -3.50 0.000 -.15969 -.0450597
sharepast | -1.328398 .1331313 -9.98 0.000 -1.58933 -1.067465
east | .1624754 .0628192 2.59 0.010 .0393521 .2855987
khangai | .2025574 .0522529 3.88 0.000 .1001437 .3049711
central | -.1739832 .0576205 -3.02 0.003 -.2869174 -.0610491
UB | .2516309 .0518075 4.86 0.000 .15009 .3531718
_cons | -.8136612 .0686039 -11.86 0.000 -.9481223 -.6792001
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 24635
Model VCE : OIM
Expression : Pr(immig), predict()
dy/dx w.r.t. : HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.0184734 .00125 -14.78 0.000 -.0209233 -.0160235
agesq | -.0000364 2.43e-06 -15.00 0.000 -.0000412 -.0000317
child | .0045777 .0019779 2.31 0.021 .000701 .0084544
lnmine | .0025881 .0006689 3.87 0.000 .0012772 .003899
marrge | .03426 .0038809 8.83 0.000 .0266536 .0418664
EDU | .0253873 .0032944 7.71 0.000 .0189304 .0318441
EMP | -.0118809 .0033961 -3.50 0.000 -.0185371 -.0052248
sharepast | -.1541651 .0155968 -9.88 0.000 -.1847342 -.123596
east | .0188558 .0072931 2.59 0.010 .0045617 .03315
khangai | .0235075 .0060732 3.87 0.000 .0116042 .0354108
central | -.0201913 .0066923 -3.02 0.003 -.033308 -.0070747
UB | .0292026 .0060213 4.85 0.000 .017401 .0410042
------------------------------------------------------------------------------
. probit immig HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB, vce(bootstrap, reps(500))
(running probit on estimation sample)
Bootstrap replications (500)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
Probit regression Number of obs = 24635
Replications = 500
Wald chi2(12) = 751.94
Prob > chi2 = 0.0000
Log likelihood = -5348.2508 Pseudo R2 = 0.0964
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
immig | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.1591801 .0126795 -12.55 0.000 -.1840314 -.1343288
agesq | -.0003139 .0000214 -14.65 0.000 -.0003559 -.0002719
child | .0394447 .0196725 2.01 0.045 .0008872 .0780022
lnmine | .022301 .0061473 3.63 0.000 .0102525 .0343495
marrge | .2952087 .0366813 8.05 0.000 .2233147 .3671028
EDU | .2187549 .0279829 7.82 0.000 .1639094 .2736005
EMP | -.1023748 .0280807 -3.65 0.000 -.1574119 -.0473377
sharepast | -1.328398 .1318705 -10.07 0.000 -1.586859 -1.069936
east | .1624754 .0665041 2.44 0.015 .0321298 .292821
khangai | .2025574 .0489888 4.13 0.000 .1065411 .2985737
central | -.1739832 .0597339 -2.91 0.004 -.2910596 -.0569068
UB | .2516309 .0510033 4.93 0.000 .1516661 .3515956
_cons | -.8136612 .0713887 -11.40 0.000 -.9535805 -.6737419
------------------------------------------------------------------------------
. margins, dydx(*)
Average marginal effects Number of obs = 24635
Model VCE : Bootstrap
Expression : Pr(immig), predict()
dy/dx w.r.t. : HHSIZE agesq child lnmine marrge EDU EMP sharepast east khangai central UB
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
HHSIZE | -.0184734 .0014711 -12.56 0.000 -.0213568 -.01559
agesq | -.0000364 2.49e-06 -14.65 0.000 -.0000413 -.0000316
child | .0045777 .0022822 2.01 0.045 .0001046 .0090508
lnmine | .0025881 .0007119 3.64 0.000 .0011928 .0039834
marrge | .03426 .0042176 8.12 0.000 .0259937 .0425263
EDU | .0253873 .0033093 7.67 0.000 .0189011 .0318734
EMP | -.0118809 .0032721 -3.63 0.000 -.0182941 -.0054678
sharepast | -.1541651 .0151716 -10.16 0.000 -.1839008 -.1244294
east | .0188558 .0077445 2.43 0.015 .0036769 .0340347
khangai | .0235075 .005675 4.14 0.000 .0123848 .0346302
central | -.0201913 .0069341 -2.91 0.004 -.033782 -.0066007
UB | .0292026 .0059231 4.93 0.000 .0175935 .0408117
------------------------------------------------------------------------------
.
Comment