Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Best model for this data?

    Dear all,
    I'm having slight problems finding the right model for my data. My independent variable is an ordered categorical variable, scale 0-3. My dependent variables are summarized below:

    Code:
        Variable |       Obs        Mean    Std. Dev.       Min        Max
    -------------+--------------------------------------------------------
         PFbuyin |      1370    .2734774    .2943603          0       .992
    csrcountr~og |      1370   -.6122415    .2217881  -1.203973  -.3147107
    indivle~tlog |      1370    1.764782    .8460997          0   2.822278
     orglegitlog |      1370    3.291117    .5551468          0   3.882576
    leftvotes100 |      1370    11.27494    18.62507          0       51.2
    -------------+--------------------------------------------------------
    greenvot~100 |      1370    3.612737    3.725471          0       11.8
    performori~v |      1370    5.929653    .2981624       5.09       6.41
    diversity~20 |       865    .2947977    .4562155          0          1
    diversity2~3 |       865    .3063584    .4612471          0          1
    diversityo~3 |       865    .1560694    .3631311          0          1
    -------------+--------------------------------------------------------
    aum_natura~g |      1370    2.947121     1.86649          0   8.177789
       instcollv |      1370    4.475164    .4076155       3.84       5.57
        turnover |      1370    .2734128    .1520528          0      .8425
    ftse4goode~r |      1370    .0510949    .2202717          0          1
    The dataset is a panel dataset. The dependent variable is time-variant. The indepvars are a mixture of time variant and time invariant. They are however mostly time invariant. So I would guess that in this case, I should perform a cross section analysis with an ologit or mlogit? But when I try, I get the below results:
    Code:
    . bysort Datayear: ologit  percentintESG PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performori
    > entv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if IM==1, nolog
    
    --------------------------------------------------------------------------------------------------------------------------------------
    -> Datayear = 2007
    no observations
    
    --------------------------------------------------------------------------------------------------------------------------------------
    -> Datayear = 2008
    note: ftse4goodever omitted because of collinearity
    convergence not achieved
    
    Ordered logistic regression                       Number of obs   =         14
                                                      LR chi2(-6)     =      64.53
                                                      Prob > chi2     =          .
    Log likelihood =          0                       Pseudo R2       =     1.0000
    
    --------------------------------------------------------------------------------------
           percentintESG |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------------+----------------------------------------------------------------
                 PFbuyin |   5974.335          .        .       .            .           .
    csrcountryrating_log |  -2804.866          .        .       .            .           .
           indivlegitlog |  -490.9564          .        .       .            .           .
             orglegitlog |   9944.791          .        .       .            .           .
            leftvotes100 |  -89.48098   1.12e+08    -0.00   1.000    -2.20e+08    2.20e+08
           greenvotes100 |   359.1942   5.42e+08     0.00   1.000    -1.06e+09    1.06e+09
          performorientv |  -3898.506   7.56e+08    -0.00   1.000    -1.48e+09    1.48e+09
         diversityupto20 |  -2467.232          .        .       .            .           .
         diversity20to33 |  -1835.009          .        .       .            .           .
         diversityover33 |    319.082          .        .       .            .           .
          aum_naturallog |   146.1296   1.09e+09     0.00   1.000    -2.14e+09    2.14e+09
               instcollv |  -2872.946          .        .       .            .           .
                turnover |  -7486.932          .        .       .            .           .
           ftse4goodever |          0  (omitted)
    ---------------------+----------------------------------------------------------------
                   /cut1 |  -2529.599          .                             .           .
                   /cut2 |  -2437.345          .                             .           .
                   /cut3 |   -2350.64          .                             .           .
                   /cut4 |  -2262.752          .                             .           .
                   /cut5 |  -2175.402          .                             .           .
                   /cut6 |  -2088.195          .                             .           .
                   /cut7 |  -2001.205          .                             .           .
                   /cut8 |  -1914.021          .                             .           .
                   /cut9 |  -1826.072          .                             .           .
                  /cut10 |  -1736.209          .                             .           .
    --------------------------------------------------------------------------------------
    Note: 14 observations completely determined.  Standard errors questionable.
    convergence not achieved
    r(430);
    
    . bysort Datayear: mlogit  percentintESG PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performori
    > entv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if IM==1, nolog
    
    --------------------------------------------------------------------------------------------------------------------------------------
    -> Datayear = 2007
    no observations
    
    --------------------------------------------------------------------------------------------------------------------------------------
    -> Datayear = 2008
    note: ftse4goodever omitted because of collinearity
    invalid matrix stripe;
    .18
    r(198);
    
    .
    Is there something I'm missing with the data characteristics or is there an alternative model I could use? When I just perform a logistic regression on the data, the results are good and normal. But with most time-invariant variables, these results may be spurious, am I right?
    Many thanks in advance for your input.

    Sue

  • #2
    Sue:
    have you given it a try with -xtologit-?

    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      It looks as if it's something that you haven't noticed in the data characteristics.

      First, when IM==1, you have zero all-nonmissing observations for one of the two years and fourteen all-nonmissing observations for the other.

      Second, your response variable is supposed to be ordered-categorical with a 0-to-3 scale, but there are 10 cut points (11 categories) in the one ordered-logistic model where you had any observations at all.

      You might want to look into some data-exploration commands that Stata has, such as inspect, codebook with its options, and the misstable suite.

      Comment


      • #4
        Thank you so much for the replies!
        Carlo, yes I have tried xtlogit, as that's the model that I'm using for the other binary outcome in this same study. I'm going to paste the results at the end of this post, they are good. However, logit is made for binary outcomes, not for ordered categorical outcomes, isn't it? For that reason I thought logit was not appropriate here.

        Joseph:
        The data is quite sparse in many years unfortunately.
        however, the bigger issue here is that it was 11PM in my time zone when I was writing the post and I accidentally used the wrong outcome variable! Which is continuous 0-100 and so of course it has 10 cut points...

        So here is the result of the same model with the actual 0-3 scale:

        Code:
        . bysort Datayear: ologit   seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 gre
        > envotes100 performorientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover 
        >   ftse4goodever if IM==1, nolog
        
        ---------------------------------------------------------------------------------------------------------------
        -> Datayear = 2007
        note: leftvotes100 omitted because of collinearity
        note: performorientv omitted because of collinearity
        note: diversity20to33 omitted because of collinearity
        note: diversityover33 omitted because of collinearity
        note: aum_naturallog omitted because of collinearity
        note: instcollv omitted because of collinearity
        note: turnover omitted because of collinearity
        note: ftse4goodever omitted because of collinearity
        convergence not achieved
        
        Ordered logistic regression                       Number of obs   =          7
                                                          LR chi2(-2)     =      14.06
                                                          Prob > chi2     =          .
        Log likelihood =          0                       Pseudo R2       =     1.0000
        
        --------------------------------------------------------------------------------------
                  seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        ---------------------+----------------------------------------------------------------
                     PFbuyin |   56858.87          .        .       .            .           .
        csrcountryrating_log |  -246340.6          .        .       .            .           .
               indivlegitlog |  -8457.285          .        .       .            .           .
                 orglegitlog |   5000.852          .        .       .            .           .
                leftvotes100 |          0  (omitted)
               greenvotes100 |  -558.9055          .        .       .            .           .
              performorientv |          0  (omitted)
             diversityupto20 |   7.27e-09          .        .       .            .           .
             diversity20to33 |          0  (omitted)
             diversityover33 |          0  (omitted)
              aum_naturallog |          0  (omitted)
                   instcollv |          0  (omitted)
                    turnover |          0  (omitted)
               ftse4goodever |          0  (omitted)
        ---------------------+----------------------------------------------------------------
                       /cut1 |   131653.6          .                             .           .
                       /cut2 |   132055.3          .                             .           .
        --------------------------------------------------------------------------------------
        Note: 7 observations completely determined.  Standard errors questionable.
        convergence not achieved
        r(430);
        Here is the -mlogit- results

        Code:
         mlogit   seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 perfor
        > morientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever i
        > f IM==1, nolog
        
        Multinomial logistic regression                   Number of obs   =        244
                                                          LR chi2(56)     =      86.63
                                                          Prob > chi2     =     0.0054
        Log likelihood = -317.02112                       Pseudo R2       =     0.1202
        
        --------------------------------------------------------------------------------------
                  seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        ---------------------+----------------------------------------------------------------
        0                    |
                     PFbuyin |   3.770004   1.619984     2.33   0.020     .5948926    6.945115
        csrcountryrating_log |   1.533198   1.938039     0.79   0.429    -2.265288    5.331684
               indivlegitlog |   .8190287   .5811609     1.41   0.159    -.3200257    1.958083
                 orglegitlog |   1.531857   1.189603     1.29   0.198     -.799722    3.863435
                leftvotes100 |    .051257   .0221307     2.32   0.021     .0078817    .0946323
               greenvotes100 |  -.0609428    .104654    -0.58   0.560     -.266061    .1441753
              performorientv |  -.4703705   1.334249    -0.35   0.724     -3.08545    2.144709
             diversityupto20 |  -.5276525   .6308494    -0.84   0.403    -1.764095    .7087895
             diversity20to33 |  -.1591482   .6245496    -0.25   0.799    -1.383243    1.064947
             diversityover33 |    .052211   .8105047     0.06   0.949    -1.536349    1.640771
              aum_naturallog |   -.373716   .1220578    -3.06   0.002    -.6129448   -.1344872
                   instcollv |  -2.305154   1.341631    -1.72   0.086    -4.934702    .3243942
                    turnover |    .076484   1.250001     0.06   0.951    -2.373472     2.52644
               ftse4goodever |   .0027051   .9701154     0.00   0.998    -1.898686    1.904096
                       _cons |   6.487465   6.911163     0.94   0.348    -7.058166     20.0331
        ---------------------+----------------------------------------------------------------
        1                    |
                     PFbuyin |  -1.527266   1.292944    -1.18   0.238    -4.061389    1.006857
        csrcountryrating_log |   3.621053   2.319897     1.56   0.119     -.925861    8.167968
               indivlegitlog |   .3712943   .5106464     0.73   0.467    -.6295542    1.372143
                 orglegitlog |   .2065105     .55732     0.37   0.711    -.8858167    1.298838
                leftvotes100 |   .0313474   .0250906     1.25   0.212    -.0178293    .0805241
               greenvotes100 |   .0013825   .1060251     0.01   0.990    -.2064228    .2091879
              performorientv |  -.5549323   1.561133    -0.36   0.722    -3.614697    2.504832
             diversityupto20 |  -.3730413    .640901    -0.58   0.561    -1.629184    .8831015
             diversity20to33 |  -.4602533   .6426445    -0.72   0.474    -1.719813    .7993068
             diversityover33 |    .392721   .8731194     0.45   0.653    -1.318562    2.104004
              aum_naturallog |  -.3174318   .1234826    -2.57   0.010    -.5594532   -.0754103
                   instcollv |   1.314182    1.23309     1.07   0.287    -1.102629    3.730994
                    turnover |  -1.164575   1.347346    -0.86   0.387    -3.805324    1.476175
               ftse4goodever |   .8610953   .8458731     1.02   0.309    -.7967854    2.518976
                       _cons |  -.9187421   7.499439    -0.12   0.902    -15.61737    13.77989
        ---------------------+----------------------------------------------------------------
        2                    |
                     PFbuyin |  -2.631532   1.293166    -2.03   0.042    -5.166091   -.0969737
        csrcountryrating_log |  -1.133705   1.614273    -0.70   0.482    -4.297622    2.030213
               indivlegitlog |   .1851066   .4373599     0.42   0.672    -.6721031    1.042316
                 orglegitlog |   .4990353   .5279203     0.95   0.345    -.5356696     1.53374
                leftvotes100 |   .0156402   .0197184     0.79   0.428    -.0230072    .0542876
               greenvotes100 |  -.0122351   .0872856    -0.14   0.889    -.1833117    .1588415
              performorientv |  -2.310456   1.378648    -1.68   0.094    -5.012558    .3916449
             diversityupto20 |  -.5146675   .5460846    -0.94   0.346    -1.584974    .5556387
             diversity20to33 |  -.7893414   .5574105    -1.42   0.157    -1.881846     .303163
             diversityover33 |  -.8875393   .7787749    -1.14   0.254     -2.41391    .6388315
              aum_naturallog |  -.0552637     .09708    -0.57   0.569     -.245537    .1350096
                   instcollv |   2.642445   1.222674     2.16   0.031     .2460486    5.038842
                    turnover |   .3848736   1.108225     0.35   0.728    -1.787207    2.556954
               ftse4goodever |   .5751586   .7674675     0.75   0.454      -.92905    2.079367
                       _cons |   .2373194   6.675694     0.04   0.972     -12.8468    13.32144
        ---------------------+----------------------------------------------------------------
        3                    |  (base outcome)
        ---------------------+----------------------------------------------------------------
        4                    |
                     PFbuyin |  -1.455721   3.459283    -0.42   0.674    -8.235791    5.324349
        csrcountryrating_log |   .7154868   3.578684     0.20   0.842    -6.298604    7.729578
               indivlegitlog |   1.078545   1.595024     0.68   0.499    -2.047645    4.204735
                 orglegitlog |   2.559555   3.599231     0.71   0.477    -4.494809    9.613919
                leftvotes100 |   .0799398   .0577578     1.38   0.166    -.0332634    .1931429
               greenvotes100 |  -.3356311   .3140651    -1.07   0.285    -.9511873    .2799251
              performorientv |  -1.369141   2.949892    -0.46   0.643    -7.150823    4.412542
             diversityupto20 |   -1.14568    .985871    -1.16   0.245    -3.077952    .7865913
             diversity20to33 |  -.7222027   .9125344    -0.79   0.429    -2.510737    1.066332
             diversityover33 |   -1.26377   1.375179    -0.92   0.358    -3.959072    1.431531
              aum_naturallog |    .096329   .1774614     0.54   0.587     -.251489     .444147
                   instcollv |   3.490562   3.457829     1.01   0.313    -3.286659    10.26778
                    turnover |   1.920136    2.18872     0.88   0.380    -2.369677    6.209949
               ftse4goodever |  -13.93619   798.7745    -0.02   0.986    -1579.506    1551.633
                       _cons |  -19.96759   19.85417    -1.01   0.315    -58.88104    18.94585
        --------------------------------------------------------------------------------------
        And here are the results of the panel logistic on the same data:
        Code:
        xtlogit   seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 perfo
        > rmorientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever 
        > if IM==1, nolog
        
        Random-effects logistic regression              Number of obs      =       244
        Group variable: AccountName_~m                  Number of groups   =       109
        
        Random effects u_i ~ Gaussian                   Obs per group: min =         1
                                                                       avg =       2.2
                                                                       max =         5
        
                                                        Wald chi2(14)      =     21.14
        Log likelihood  = -106.32473                    Prob > chi2        =    0.0980
        
        --------------------------------------------------------------------------------------
                  seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        ---------------------+----------------------------------------------------------------
                     PFbuyin |  -4.126424   1.489385    -2.77   0.006    -7.045565   -1.207283
        csrcountryrating_log |   -.755804   1.769099    -0.43   0.669    -4.223174    2.711566
               indivlegitlog |  -.6593336   .5442709    -1.21   0.226    -1.726085    .4074177
                 orglegitlog |  -1.004266   1.133888    -0.89   0.376    -3.226646    1.218115
                leftvotes100 |  -.0341208   .0192972    -1.77   0.077    -.0719426     .003701
               greenvotes100 |    .049475   .0949205     0.52   0.602    -.1365658    .2355157
              performorientv |  -.4067348   1.039849    -0.39   0.696    -2.444801    1.631331
             diversityupto20 |   .2004588   .5365441     0.37   0.709    -.8511483    1.252066
             diversity20to33 |  -.2559331   .5400973    -0.47   0.636    -1.314504    .8026382
             diversityover33 |  -.3642915   .6604502    -0.55   0.581     -1.65875    .9301671
              aum_naturallog |   .2916365   .1066848     2.73   0.006     .0825381     .500735
                   instcollv |   2.696824   1.255802     2.15   0.032      .235497     5.15815
                    turnover |  -.0857017   1.017955    -0.08   0.933    -2.080856    1.909453
               ftse4goodever |   .3342299   .8720317     0.38   0.702    -1.374921    2.043381
                       _cons |  -3.153307   5.304304    -0.59   0.552    -13.54955    7.242937
        ---------------------+----------------------------------------------------------------
                    /lnsig2u |  -12.65824   18.20029                     -48.33016    23.01368
        ---------------------+----------------------------------------------------------------
                     sigma_u |   .0017836   .0162311                      3.20e-11    99393.44
                         rho |   9.67e-07   .0000176                      3.11e-22           1
        --------------------------------------------------------------------------------------
        Likelihood-ratio test of rho=0: chibar2(01) =  2.4e-05 Prob >= chibar2 = 0.498

        Comment


        • #5
          Sue:
          I mentioned -xtologit-, not -xtlogit-.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Dear Carlo,
            yes, of course! Sorry. Yes, I did want to try xtologit, because I read about it somewhere and it would seem ideal, however my version of stata (12) doesn't recognize the command and the search doesn't return any results. Is this a new command? Would you be able to give me any ideas on how I could get it for my version of Stata?

            Comment


            • #7
              Sue:
              I assumed you use Stata 14(.1), otherwise, as per FAQ, you should report the version at hand.
              With Stata 12, you may want to try a pooled -ologit-
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment


              • #8
                Thank you for your suggestion. The ologit does indeed work. The results are pasted below - do they look reasonable to you?
                However, running a pooled ologit I believe doesn't look at within subject variation and also doesn't take into account the fact that the data is panel data? Please correct me if I'm wrong. This model is supposed to be part of a study where the other 'main' models are cross section random effects models on panel data. Having just one pooled model that ignores the time dimension of the data doesn't really fit with my story very well. So I'm still looking for a solution.

                Below I also include the results from the model that I would ideally like to run but that doesn't work (doesn't converge, is not significant, drops almost all variables) on most years in my sample. It's only significant in the final two years. Is this mostly because the number of observations is simply too small? Is there another reason? And is there any way I can overcome the problem of few observations or do I just have to give up on those years in the sample?

                Again, many thanks for your help.

                Code:
                . ologit  seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 perform
                > orientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if
                >  IM==1, nolog
                
                Ordered logistic regression                       Number of obs   =        244
                                                                  LR chi2(14)     =      32.59
                                                                  Prob > chi2     =     0.0033
                Log likelihood = -344.04345                       Pseudo R2       =     0.0452
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |  -.4954593   .7196458    -0.69   0.491    -1.905939    .9150205
                csrcountryrating_log |  -.5951428   1.105249    -0.54   0.590    -2.761391    1.571105
                       indivlegitlog |   -.150878   .2820003    -0.54   0.593    -.7035884    .4018324
                         orglegitlog |  -.3229775   .3673868    -0.88   0.379    -1.043043    .3970874
                        leftvotes100 |  -.0215017   .0126801    -1.70   0.090    -.0463543    .0033509
                       greenvotes100 |   .0160512    .057394     0.28   0.780    -.0964389    .1285412
                      performorientv |   .0615497   .7643228     0.08   0.936    -1.436496    1.559595
                     diversityupto20 |   .2522929   .3576897     0.71   0.481    -.4487661    .9533518
                     diversity20to33 |   .1516756    .367621     0.41   0.680    -.5688484    .8721996
                     diversityover33 |  -.2051733   .4893008    -0.42   0.675    -1.164185    .7538387
                      aum_naturallog |   .2452519   .0655541     3.74   0.000     .1167683    .3737355
                           instcollv |  -.0095601   .6451126    -0.01   0.988    -1.273958    1.254837
                            turnover |   .3318002   .7074299     0.47   0.639    -1.054737    1.718337
                       ftse4goodever |   -.439235   .4974152    -0.88   0.377    -1.414151    .5356808
                ---------------------+----------------------------------------------------------------
                               /cut1 |  -1.587669   3.731337                     -8.900955    5.725617
                               /cut2 |  -.6546266    3.72866                     -7.962666    6.653413
                               /cut3 |   .5712659   3.726397                     -6.732337    7.874869
                               /cut4 |   3.215977   3.734382                     -4.103278    10.53523
                Code:
                ologit seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performo
                > rientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if 
                > IM==1 & Datayear ==2007, nolog
                note: leftvotes100 omitted because of collinearity
                note: performorientv omitted because of collinearity
                note: diversity20to33 omitted because of collinearity
                note: diversityover33 omitted because of collinearity
                note: aum_naturallog omitted because of collinearity
                note: instcollv omitted because of collinearity
                note: turnover omitted because of collinearity
                note: ftse4goodever omitted because of collinearity
                convergence not achieved
                
                Ordered logistic regression                       Number of obs   =          7
                                                                  LR chi2(-2)     =      14.06
                                                                  Prob > chi2     =          .
                Log likelihood =          0                       Pseudo R2       =     1.0000
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |   56858.87          .        .       .            .           .
                csrcountryrating_log |  -246340.6          .        .       .            .           .
                       indivlegitlog |  -8457.285          .        .       .            .           .
                         orglegitlog |   5000.852          .        .       .            .           .
                        leftvotes100 |          0  (omitted)
                       greenvotes100 |  -558.9055          .        .       .            .           .
                      performorientv |          0  (omitted)
                     diversityupto20 |  -3.65e-09          .        .       .            .           .
                     diversity20to33 |          0  (omitted)
                     diversityover33 |          0  (omitted)
                      aum_naturallog |          0  (omitted)
                           instcollv |          0  (omitted)
                            turnover |          0  (omitted)
                       ftse4goodever |          0  (omitted)
                ---------------------+----------------------------------------------------------------
                               /cut1 |   131653.6          .                             .           .
                               /cut2 |   132055.3          .                             .           .
                --------------------------------------------------------------------------------------
                Note: 7 observations completely determined.  Standard errors questionable.
                convergence not achieved
                r(430);
                
                . ologit seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performo
                > rientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if 
                > IM==1 & Datayear ==2008, nolog
                note: ftse4goodever omitted because of collinearity
                convergence not achieved
                
                Ordered logistic regression                       Number of obs   =         14
                                                                  LR chi2(10)     =      23.25
                                                                  Prob > chi2     =     0.0098
                Log likelihood =          0                       Pseudo R2       =     1.0000
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |  -3748.548   8.95e+08    -0.00   1.000    -1.75e+09    1.75e+09
                csrcountryrating_log |   7673.873   1.35e+09     0.00   1.000    -2.66e+09    2.66e+09
                       indivlegitlog |   5582.253   6.29e+08     0.00   1.000    -1.23e+09    1.23e+09
                         orglegitlog |  -12640.89          .        .       .            .           .
                        leftvotes100 |   28.62673   1.25e+07     0.00   1.000    -2.45e+07    2.45e+07
                       greenvotes100 |   224.9611   4.81e+07     0.00   1.000    -9.43e+07    9.43e+07
                      performorientv |   570.4771   6.65e+08     0.00   1.000    -1.30e+09    1.30e+09
                     diversityupto20 |   948.5041   6.90e+08     0.00   1.000    -1.35e+09    1.35e+09
                     diversity20to33 |   451.5626   2.65e+08     0.00   1.000    -5.19e+08    5.19e+08
                     diversityover33 |  -185.6939   7.61e+08    -0.00   1.000    -1.49e+09    1.49e+09
                      aum_naturallog |   -.067063   1.42e+08    -0.00   1.000    -2.79e+08    2.79e+08
                           instcollv |   486.2226   7.80e+08     0.00   1.000    -1.53e+09    1.53e+09
                            turnover |   2376.615          .        .       .            .           .
                       ftse4goodever |          0  (omitted)
                ---------------------+----------------------------------------------------------------
                               /cut1 |  -29140.12   5.05e+08                     -9.89e+08    9.89e+08
                               /cut2 |  -29063.66          .                             .           .
                --------------------------------------------------------------------------------------
                Note: 14 observations completely determined.  Standard errors questionable.
                convergence not achieved
                r(430);
                
                . ologit seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performo
                > rientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if 
                > IM==1 & Datayear ==2009, nolog
                
                Ordered logistic regression                       Number of obs   =         39
                                                                  LR chi2(14)     =      18.63
                                                                  Prob > chi2     =     0.1797
                Log likelihood = -34.082276                       Pseudo R2       =     0.2146
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |    3.31145   3.322583     1.00   0.319    -3.200693    9.823593
                csrcountryrating_log |   7.461646    4.63722     1.61   0.108    -1.627138    16.55043
                       indivlegitlog |  -.5769087   .9131182    -0.63   0.528    -2.366588     1.21277
                         orglegitlog |  -1.808917   1.835944    -0.99   0.324    -5.407302    1.789467
                        leftvotes100 |   .0208028   .0379972     0.55   0.584    -.0536704    .0952759
                       greenvotes100 |  -.0164889   .2015996    -0.08   0.935    -.4116168     .378639
                      performorientv |   7.675969   2.973213     2.58   0.010     1.848579    13.50336
                     diversityupto20 |  -.5148694   .9989433    -0.52   0.606    -2.472762    1.443024
                     diversity20to33 |  -.9875413   1.154385    -0.86   0.392    -3.250093    1.275011
                     diversityover33 |  -.4107049    1.45379    -0.28   0.778    -3.260081    2.438672
                      aum_naturallog |   .1458315   .2059535     0.71   0.479    -.2578299    .5494929
                           instcollv |  -7.103937   4.026129    -1.76   0.078    -14.99501    .7871309
                            turnover |   1.418569   2.408744     0.59   0.556    -3.302483     6.13962
                       ftse4goodever |  -.7968059   1.383057    -0.58   0.565    -3.507549    1.913937
                ---------------------+----------------------------------------------------------------
                               /cut1 |  -.3511224   12.27973                     -24.41895     23.7167
                               /cut2 |   .7136661   12.32753                     -23.44784    24.87518
                               /cut3 |   3.983417   12.40188                     -20.32381    28.29065
                --------------------------------------------------------------------------------------
                
                . ologit seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performo
                > rientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if 
                > IM==1 & Datayear ==2010, nolog
                
                Ordered logistic regression                       Number of obs   =         75
                                                                  LR chi2(14)     =      47.70
                                                                  Prob > chi2     =     0.0000
                Log likelihood = -65.540758                       Pseudo R2       =     0.2668
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |     5.3865    4.86141     1.11   0.268    -4.141689    14.91469
                csrcountryrating_log |   1.635832   3.893184     0.42   0.674    -5.994669    9.266333
                       indivlegitlog |  -1.831866   1.161443    -1.58   0.115    -4.108252    .4445191
                         orglegitlog |  -1.276043   1.904845    -0.67   0.503    -5.009471    2.457385
                        leftvotes100 |  -.0645901   .0299755    -2.15   0.031    -.1233409   -.0058392
                       greenvotes100 |     .08719   .1596738     0.55   0.585    -.2257649    .4001449
                      performorientv |   3.883407   2.420164     1.60   0.109     -.860028    8.626842
                     diversityupto20 |   .9667672   .7443002     1.30   0.194    -.4920343    2.425569
                     diversity20to33 |   1.021454   .7860921     1.30   0.194    -.5192583    2.562166
                     diversityover33 |   .1472461   1.062066     0.14   0.890    -1.934366    2.228858
                      aum_naturallog |      .0782   .1327366     0.59   0.556     -.181959     .338359
                           instcollv |  -5.089731   5.424011    -0.94   0.348     -15.7206    5.541135
                            turnover |   1.812459   1.557884     1.16   0.245    -1.240937    4.865856
                       ftse4goodever |     2.4959   1.508619     1.65   0.098    -.4609389    5.452739
                ---------------------+----------------------------------------------------------------
                               /cut1 |  -10.25159   13.15193                      -36.0289    15.52571
                               /cut2 |  -8.511754   13.17765                     -34.33948    17.31597
                               /cut3 |  -6.334234   13.15436                     -32.11631    19.44784
                --------------------------------------------------------------------------------------
                
                . ologit seekESGinf PFbuyin csrcountryrating_log  indivlegitlog orglegitlog leftvotes100 greenvotes100 performo
                > rientv diversityupto20 diversity20to33 diversityover33  aum_naturallog instcollv turnover   ftse4goodever if 
                > IM==1 & Datayear ==2011, nolog
                
                Ordered logistic regression                       Number of obs   =        109
                                                                  LR chi2(14)     =      26.48
                                                                  Prob > chi2     =     0.0224
                Log likelihood = -156.76687                       Pseudo R2       =     0.0779
                
                --------------------------------------------------------------------------------------
                          seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                ---------------------+----------------------------------------------------------------
                             PFbuyin |  -.9578371   .9612166    -1.00   0.319    -2.841787    .9261128
                csrcountryrating_log |  -.7193628   1.684007    -0.43   0.669    -4.019956    2.581231
                       indivlegitlog |   .3021077   .4327411     0.70   0.485    -.5460492    1.150265
                         orglegitlog |  -.5557471   .4924045    -1.13   0.259    -1.520842    .4093481
                        leftvotes100 |  -.0325085   .0198423    -1.64   0.101    -.0713987    .0063817
                       greenvotes100 |   .1131334   .0944406     1.20   0.231    -.0719669    .2982336
                      performorientv |  -1.483323    1.23269    -1.20   0.229     -3.89935     .932704
                     diversityupto20 |   .0430423   .5405413     0.08   0.937    -1.016399    1.102484
                     diversity20to33 |   .0600262   .5767674     0.10   0.917    -1.070417    1.190469
                     diversityover33 |  -.1106371   .7033911    -0.16   0.875    -1.489258    1.267984
                      aum_naturallog |   .4345619   .1022944     4.25   0.000     .2340685    .6350553
                           instcollv |   .7466973   .9229655     0.81   0.419    -1.062282    2.555676
                            turnover |   .3124467   1.083001     0.29   0.773    -1.810197     2.43509
                       ftse4goodever |  -1.077466    .759816    -1.42   0.156    -2.566678    .4117463
                ---------------------+----------------------------------------------------------------
                               /cut1 |  -6.253794   6.039239                     -18.09048    5.582897
                               /cut2 |   -5.29348   6.025877                     -17.10398    6.517021
                               /cut3 |  -4.327777   6.014313                     -16.11561    7.460059
                               /cut4 |  -2.622336   6.019608                     -14.42055    9.175878
                --------------------------------------------------------------------------------------
                
                .

                Comment


                • #9
                  Sue:
                  some remarks about your last post:
                  - you should cluster your SEs in the -ologit- model (please, see -vce(cluster clusterid)-) to take into account serial correlation among repeated measures on the same id;
                  - you may add i.year to see if time plays any role in your regression. However, be aware that you already have too many predictors vs your sample size in your first model;
                  - eventually, I would side-track the other models, as you have too few observations, which are the cause of the problems you reported.
                  Kind regards,
                  Carlo
                  (Stata 19.0)

                  Comment


                  • #10
                    Dear Carlo,
                    I have incorporated your remarks and so now I have managed to get a hold of Stata13 and I ran the clustered (by subject) xtologit you suggested. The results are below and I'm quite happy with them:
                    Code:
                    Random-effects ordered logistic regression      Number of obs      =       244
                    Group variable: AccountName_~m                  Number of groups   =       109
                    
                    Random effects u_i ~ Gaussian                   Obs per group: min =         1
                                                                                   avg =       2.2
                                                                                   max =         5
                    
                    Integration method: mvaghermite                 Integration points =        12
                    
                                                                    Wald chi2(15)      =     43.01
                    Log pseudolikelihood  = -341.64613              Prob > chi2        =    0.0002
                    
                                                    (Std. Err. adjusted for 109 clusters in AccountName_num)
                    ----------------------------------------------------------------------------------------
                                           |               Robust
                                seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                    -----------------------+----------------------------------------------------------------
                                   PFbuyin |   .0919279     .95814     0.10   0.924    -1.785992    1.969848
                      csrcountryrating_log |  -1.327829   1.114841    -1.19   0.234    -3.512876    .8572189
                                indivlegit |   .0228387   .0434859     0.53   0.599     -.062392    .1080694
                                  orglegit |  -.0479258   .0230172    -2.08   0.037    -.0930387   -.0028129
                                 leftvotes |  -3.009324   .8106297    -3.71   0.000    -4.598129   -1.420519
                                greenvotes |   1.364536   3.899383     0.35   0.726    -6.278115    9.007186
                           diversityupto20 |   .3216744   .3683281     0.87   0.382    -.4002354    1.043584
                           diversity20to33 |   .1677256   .3540636     0.47   0.636    -.5262264    .8616776
                           diversityover33 |   -.214817   .5124138    -0.42   0.675     -1.21913    .7894956
                            aum_naturallog |   .2681329   .0602096     4.45   0.000     .1501243    .3861415
                                 instcollv |   1.492623   .6841186     2.18   0.029     .1517748     2.83347
                             humaneorientv |    1.11081   .5272193     2.11   0.035      .077479    2.144141
                            performorientp |   .4478877   .1702547     2.63   0.009     .1141946    .7815807
                                  turnover |   .3658671   .6359701     0.58   0.565    -.8806114    1.612346
                             ftse4goodever |  -.4265194   .3939261    -1.08   0.279      -1.1986    .3455616
                    -----------------------+----------------------------------------------------------------
                                     /cut1 |   13.21307    5.84077     2.26   0.024     1.765369    24.66077
                                     /cut2 |   14.15712    5.84357     2.42   0.015     2.703929     25.6103
                                     /cut3 |    15.4061   5.869435     2.62   0.009     3.902217    26.90998
                                     /cut4 |   18.07048   5.927865     3.05   0.002      6.45208    29.68889
                    -----------------------+----------------------------------------------------------------
                                 /sigma2_u |   1.19e-31   2.97e-31                      8.97e-34    1.58e-29
                    ----------------------------------------------------------------------------------------
                    I did also as suggested add the year variable but only one of the coefficients is significant and I'm not sure what to do with these results. When it looks like this can I draw any conclusions? Organizations were less likely to seek ESG information in 2008 because the Coef is negative and statistically significant?
                    Code:
                    . xtologit seekESGinf PFbuyin csrcountryrating_log  indivlegit orglegit leftvotes greenvotes diversityupto20 diversity20to33 diversityover33  aum_naturallog i
                    > nstcollv humaneorientv performorientp turnover  ftse4goodever i.Datayear if IM==1, nolog vce(cluster AccountName_num)
                    
                    Random-effects ordered logistic regression      Number of obs      =       244
                    Group variable: AccountName_~m                  Number of groups   =       109
                    
                    Random effects u_i ~ Gaussian                   Obs per group: min =         1
                                                                                   avg =       2.2
                                                                                   max =         5
                    
                    Integration method: mvaghermite                 Integration points =        12
                    
                                                                    Wald chi2(19)      =     74.17
                    Log pseudolikelihood  = -325.06034              Prob > chi2        =    0.0000
                    
                                                    (Std. Err. adjusted for 109 clusters in AccountName_num)
                    ----------------------------------------------------------------------------------------
                                           |               Robust
                                seekESGinf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                    -----------------------+----------------------------------------------------------------
                                   PFbuyin |   .5384846   1.040859     0.52   0.605    -1.501562    2.578531
                      csrcountryrating_log |  -1.133928   1.080017    -1.05   0.294    -3.250722    .9828658
                                indivlegit |   .0583561   .0463641     1.26   0.208    -.0325159    .1492281
                                  orglegit |  -.0618345    .023184    -2.67   0.008    -.1072743   -.0163947
                                 leftvotes |  -3.688899   .8743924    -4.22   0.000    -5.402676   -1.975121
                                greenvotes |   5.459208   3.891825     1.40   0.161    -2.168628    13.08704
                           diversityupto20 |   .5098119   .3729107     1.37   0.172    -.2210795    1.240703
                           diversity20to33 |   .3020181   .3753647     0.80   0.421    -.4336831    1.037719
                           diversityover33 |   .1045167   .5558705     0.19   0.851    -.9849695    1.194003
                            aum_naturallog |   .2863932    .068257     4.20   0.000      .152612    .4201745
                                 instcollv |    1.70692   .7554982     2.26   0.024     .2261709    3.187669
                             humaneorientv |   1.328279   .5572603     2.38   0.017     .2360691    2.420489
                            performorientp |   .5494559    .213388     2.57   0.010     .1312231    .9676887
                                  turnover |   .1732204   .6343879     0.27   0.785    -1.070157    1.416598
                             ftse4goodever |  -.4148691   .3918446    -1.06   0.290     -1.18287    .3531322
                                           |
                                  Datayear |
                                     2008  |  -2.348503   1.000355    -2.35   0.019    -4.309162   -.3878437
                                     2009  |   .6099866   .7931401     0.77   0.442    -.9445395    2.164513
                                     2010  |   .8069777   .8029208     1.01   0.315    -.7667181    2.380674
                                     2011  |  -.1310411   .8250844    -0.16   0.874    -1.748177    1.486095
                    -----------------------+----------------------------------------------------------------
                                     /cut1 |   15.88384    6.44516     2.46   0.014     3.251557    28.51612
                                     /cut2 |   16.97171   6.461631     2.63   0.009     4.307144    29.63627
                                     /cut3 |   18.35709   6.500352     2.82   0.005     5.616639    31.09755
                                     /cut4 |   21.09985   6.601879     3.20   0.001     8.160403    34.03929
                    -----------------------+----------------------------------------------------------------
                                 /sigma2_u |   2.06e-31   6.07e-31                      6.39e-34    6.65e-29
                    ----------------------------------------------------------------------------------------

                    Comment


                    • #11
                      And also, yes, I am taking your last comment on board and will not be doing any cross section analysis on this data and will motivate that decision with insufficient observations. Thank you, you have helped enormously.

                      Comment


                      • #12
                        Sue:
                        thanks for your feed-back.
                        I agree that -i.year- does not seem that informative; I would get a rid of in the final model.
                        However, and that was the core meaning of one of my statement in the previous reply, you still have too many predictors for 244 observations (please, consider that there should be 20 observations per predictor (Katz MH. Multivariable Analysis. Second Edtion. NY: Cambridge University Press, 2006: 81), even though 10 obs per predictor may sound wise enough).
                        Hence, I would skim the literature in your research field to see whether a more parsimonious model was developed in the past by other researchers.
                        Last edited by Carlo Lazzaro; 18 Feb 2016, 11:37.
                        Kind regards,
                        Carlo
                        (Stata 19.0)

                        Comment

                        Working...
                        X