Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • test for serial correlation

    I am trying to test for autocorrelation in a panel data regression. ( I actually check for Newey west regression , but I could use GLS depending on the results too, to estimate my parameters) .
    According with Wooldridge test for autocorrelation in panel data, I get :

    Code:
    Wooldridge test for autocorrelation in panel data
    H0: no first-order autocorrelation
        F(  1,       4) =      0.229
               Prob > F =      0.6574
    but if i use actest:
    Code:
     actest, lag(6) robust
    
    Cumby-Huizinga test for autocorrelation
      H0: variable is MA process up to order q
      HA: serial correlation present at specified lags >q
    -----------------------------------------------------------------------------
      H0: q=0 (serially uncorrelated)        |  H0: q=specified lag-1
      HA: s.c. present at range specified    |  HA: s.c. present at lag specified
    -----------------------------------------+-----------------------------------
        lags   |      chi2      df     p-val | lag |      chi2      df     p-val
    -----------+-----------------------------+-----+-----------------------------
       1 -  1  |     49.280      1    0.0000 |   1 |     49.280      1    0.0000
       1 -  2  |     70.032      2    0.0000 |   2 |     30.840      1    0.0000
       1 -  3  |     74.875      3    0.0000 |   3 |     20.581      1    0.0000
       1 -  4  |     76.064      4    0.0000 |   4 |     17.715      1    0.0000
       1 -  5  |     77.342      5    0.0000 |   5 |     12.594      1    0.0004
       1 -  6  |     78.665      6    0.0000 |   6 |     10.093      1    0.0015
    -----------------------------------------------------------------------------
      Test allows predetermined regressors/instruments
      Test robust to heteroskedasticity
    
    . actest , lag(12) robust
    
    Cumby-Huizinga test for autocorrelation
      H0: variable is MA process up to order q
      HA: serial correlation present at specified lags >q
    -----------------------------------------------------------------------------
      H0: q=0 (serially uncorrelated)        |  H0: q=specified lag-1
      HA: s.c. present at range specified    |  HA: s.c. present at lag specified
    -----------------------------------------+-----------------------------------
        lags   |      chi2      df     p-val | lag |      chi2      df     p-val
    -----------+-----------------------------+-----+-----------------------------
       1 -  1  |     49.280      1    0.0000 |   1 |     49.280      1    0.0000
       1 -  2  |     70.032      2    0.0000 |   2 |     30.840      1    0.0000
       1 -  3  |     74.875      3    0.0000 |   3 |     20.581      1    0.0000
       1 -  4  |     76.064      4    0.0000 |   4 |     17.715      1    0.0000
       1 -  5  |     77.342      5    0.0000 |   5 |     12.594      1    0.0004
       1 -  6  |     78.665      6    0.0000 |   6 |     10.093      1    0.0015
       1 -  7  |     78.689      7    0.0000 |   7 |      6.005      1    0.0143
       1 -  8  |     79.044      8    0.0000 |   8 |      8.566      1    0.0034
       1 -  9  |     85.061      9    0.0000 |   9 |      8.026      1    0.0046
       1 - 10  |     86.694      10   0.0000 |  10 |      8.178      1    0.0042
       1 - 11  |     87.676      11   0.0000 |  11 |      8.010      1    0.0047
       1 - 12  |     87.693      12   0.0000 |  12 |      7.864      1    0.0050
    -----------------------------------------------------------------------------
      Test allows predetermined regressors/instruments
      Test robust to heteroskedasticity
    
    . actest , lag(12) robust clu(_fx)
    
    Cumby-Huizinga test for autocorrelation (Arellano-Bond)
      H0: variable is MA process up to order q
      HA: serial correlation present at specified lags >q
    -----------------------------------------------------------------------------
      H0: q=0 (serially uncorrelated)        |  H0: q=specified lag-1
      HA: s.c. present at range specified    |  HA: s.c. present at lag specified
    -----------------------------------------+-----------------------------------
        lags   |      chi2      df     p-val | lag |      chi2      df     p-val
    -----------+-----------------------------+-----+-----------------------------
       1 -  1  |      4.337      1    0.0373 |   1 |      4.337      1    0.0373
       1 -  2  |      4.728      2    0.0941 |   2 |      3.715      1    0.0539
       1 -  3  |      4.796      3    0.1874 |   3 |      3.977      1    0.0461
       1 -  4  |      4.808      4*   0.3076 |   4 |      4.020      1    0.0450
       1 -  5  |      5.000      5    0.4159 |   5 |      3.868      1    0.0492
       1 -  6  |      5.000      6    0.5438 |   6 |      3.912      1    0.0480
       1 -  7  |      5.000      7*   0.6600 |   7 |      3.585      1    0.0583
       1 -  8  |      5.000      8*   0.7576 |   8 |      3.858      1    0.0495
       1 -  9  |      5.000      9    0.8343 |   9 |      4.098      1    0.0429
       1 - 10  |      5.000      10*  0.8912 |  10 |      4.266      1    0.0389
       1 - 11  |      5.000      11   0.9312 |  11 |      4.318      1    0.0377
       1 - 12  |      5.000      12*  0.9580 |  12 |      4.188      1    0.0407
    -----------------------------------------------------------------------------
      Test allows predetermined regressors/instruments
      Test robust to heteroskedasticity and within-cluster autocorrelation
      * Eigenvalues adjusted to make matrix positive semidefinite
    
    actest, lags(6) q0 robust kernel(bartlett) bw(7)
    
    Cumby-Huizinga test for autocorrelation
      H0: variable is MA process up to order q
      HA: serial correlation present at specified lags >q
    -----------------------------------------------------------------------------
      H0: q=0 (serially uncorrelated)        |  H0: q=0 (serially uncorrelated)
      HA: s.c. present at range specified    |  HA: s.c. present at lag specified
    -----------------------------------------+-----------------------------------
        lags   |      chi2      df     p-val | lag |      chi2      df     p-val
    -----------+-----------------------------+-----+-----------------------------
       1 -  1  |      4.527      1    0.0334 |   1 |      4.527      1    0.0334
       1 -  2  |      9.136      2    0.0104 |   2 |      6.448      1    0.0111
       1 -  3  |     11.648      3    0.0087 |   3 |      0.514      1    0.4734
       1 -  4  |     11.648      4    0.0202 |   4 |      0.136      1    0.7123
       1 -  5  |     12.352      5    0.0303 |   5 |      0.041      1    0.8394
       1 -  6  |     12.653      6    0.0489 |   6 |      3.031      1    0.0817
    -----------------------------------------------------------------------------
      Test allows predetermined regressors/instruments
      Test robust to heteroskedasticity
    So, according with Wooldridge I dont have autocorrelation but according with Cumby-Huizinga test for autocorrelation I do.
    Except one test is for AR and the other for MA, why the difference in results and what should I understand out of it ?

    Thank you,
    Alexa
Working...
X