Hello everyone,
I have a question regarding the following: I use cross section (in my case banks) fixed effects in my regression on panel data. Untill now I have used the areg option for this, with obsorbing at the bank level ( absorb(gvkey) ). When I was talking to my thesis supervisor and told her that I wanted to use both bank fixed effects and cluster standard errors on the bank level, she told me that this is not right as this is doing the same thing twice (Are you guys agree on this??). To test what she said I used both robust and cluster with xtreg, and the results were the same. However, when I use areg absorb(gvkey) robust or areg absorb (gvkey) cluster (gvkey) results do differ. My question is, how can this differ between areg (where the cluster and robust option results in different regression results) and xtreg( where using robust or cluster does not change regression results). I have searched the statalist forum already and read this post: http://www.stata.com/statalist/archi.../msg00596.html . However, I sill dont get why using cluster differs between areg and xtreg.
Here some results:
Areg with robust
VS areg with cluster
xtreg with robust
Xtreg with cluster
So question 1) do you agree about the fact that using clustering on the same level as you apply fixed effects is redundant? and question 2) How is it possible that results differ between xtreg and areg when applying clustering?
Thank you in advance for your answers!
Yannick
I have a question regarding the following: I use cross section (in my case banks) fixed effects in my regression on panel data. Untill now I have used the areg option for this, with obsorbing at the bank level ( absorb(gvkey) ). When I was talking to my thesis supervisor and told her that I wanted to use both bank fixed effects and cluster standard errors on the bank level, she told me that this is not right as this is doing the same thing twice (Are you guys agree on this??). To test what she said I used both robust and cluster with xtreg, and the results were the same. However, when I use areg absorb(gvkey) robust or areg absorb (gvkey) cluster (gvkey) results do differ. My question is, how can this differ between areg (where the cluster and robust option results in different regression results) and xtreg( where using robust or cluster does not change regression results). I have searched the statalist forum already and read this post: http://www.stata.com/statalist/archi.../msg00596.html . However, I sill dont get why using cluster differs between areg and xtreg.
Here some results:
Areg with robust
Code:
. areg mliq L.Hqualitybank Hbank_Crisis size nim racr loanstoassets depositsloans L.Crisisdummy fedfund tedspread > changeinflation,absorb(gvkey) r Linear regression, absorbing indicators Number of obs = 3755 F( 11, 3615) = 42.87 Prob > F = 0.0000 R-squared = 0.8284 Adj R-squared = 0.8218 Root MSE = 0.0258 --------------------------------------------------------------------------------- | Robust mliq | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- Hqualitybank | L1. | -.0048897 .0016137 -3.03 0.002 -.0080536 -.0017258 | Hbank_Crisis | .0015343 .0027677 0.55 0.579 -.0038921 .0069606 size | .0037692 .0016317 2.31 0.021 .00057 .0069684 nim | -.0034188 .001323 -2.58 0.010 -.0060127 -.0008249 racr | .0016591 .0003786 4.38 0.000 .0009168 .0024014 loanstoassets | -.0460795 .0131867 -3.49 0.000 -.0719336 -.0202253 depositsloans | .0278637 .0039698 7.02 0.000 .0200803 .0356471 | Crisisdummy | L1. | .0057046 .0017564 3.25 0.001 .002261 .0091483 | fedfund | -.0014908 .0003294 -4.53 0.000 -.0021365 -.000845 tedspread | -.0030266 .0011774 -2.57 0.010 -.0053351 -.0007181 changeinflation | .0001491 .0014236 0.10 0.917 -.002642 .0029402 _cons | -.0023362 .0230833 -0.10 0.919 -.0475939 .0429215 ----------------+---------------------------------------------------------------- gvkey | absorbed (129 categories)
Code:
. areg mliq L.Hqualitybank Hbank_Crisis size nim racr loanstoassets depositsloans L.Crisisdummy fedfund tedspread > changeinflation,absorb(gvkey) cluster(gvkey) Linear regression, absorbing indicators Number of obs = 3755 F( 11, 128) = 6.64 Prob > F = 0.0000 R-squared = 0.8284 Adj R-squared = 0.8218 Root MSE = 0.0258 (Std. Err. adjusted for 129 clusters in gvkey) --------------------------------------------------------------------------------- | Robust mliq | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- Hqualitybank | L1. | -.0048897 .0041795 -1.17 0.244 -.0131595 .0033802 | Hbank_Crisis | .0015343 .0045884 0.33 0.739 -.0075447 .0106132 size | .0037692 .0048582 0.78 0.439 -.0058435 .013382 nim | -.0034188 .0028916 -1.18 0.239 -.0091403 .0023028 racr | .0016591 .0009438 1.76 0.081 -.0002084 .0035266 loanstoassets | -.0460795 .0374456 -1.23 0.221 -.120172 .028013 depositsloans | .0278637 .0115271 2.42 0.017 .0050555 .0506719 | Crisisdummy | L1. | .0057046 .0034413 1.66 0.100 -.0011045 .0125138 | fedfund | -.0014908 .000876 -1.70 0.091 -.0032241 .0002426 tedspread | -.0030266 .0018372 -1.65 0.102 -.0066618 .0006085 changeinflation | .0001491 .0019137 0.08 0.938 -.0036375 .0039358 _cons | -.0023362 .0799416 -0.03 0.977 -.1605142 .1558418 ----------------+---------------------------------------------------------------- gvkey | absorbed (129 categories)
Code:
. xtreg mliq L.Hqualitybank Hbank_Crisis size nim racr loanstoassets depositsloans L.Crisisdummy fedfund tedspread > changeinflation,fe r Fixed-effects (within) regression Number of obs = 3755 Group variable: gvkey Number of groups = 129 R-sq: within = 0.2504 Obs per group: min = 1 between = 0.2905 avg = 29.1 overall = 0.3465 max = 54 F(11,128) = 6.87 corr(u_i, Xb) = -0.1019 Prob > F = 0.0000 (Std. Err. adjusted for 129 clusters in gvkey) --------------------------------------------------------------------------------- | Robust mliq | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- Hqualitybank | L1. | -.0048897 .0041074 -1.19 0.236 -.0130169 .0032375 | Hbank_Crisis | .0015343 .0045093 0.34 0.734 -.0073881 .0104566 size | .0037692 .0047744 0.79 0.431 -.0056777 .0132162 nim | -.0034188 .0028417 -1.20 0.231 -.0090417 .0022041 racr | .0016591 .0009276 1.79 0.076 -.0001762 .0034944 loanstoassets | -.0460795 .0367998 -1.25 0.213 -.1188941 .0267351 depositsloans | .0278637 .0113282 2.46 0.015 .0054488 .0502786 | Crisisdummy | L1. | .0057046 .0033819 1.69 0.094 -.0009871 .0123963 | fedfund | -.0014908 .0008609 -1.73 0.086 -.0031942 .0002127 tedspread | -.0030266 .0018055 -1.68 0.096 -.0065991 .0005458 changeinflation | .0001491 .0018807 0.08 0.937 -.0035722 .0038705 _cons | -.0023362 .0785628 -0.03 0.976 -.1577861 .1531137 ----------------+---------------------------------------------------------------- sigma_u | .03901529 sigma_e | .02583222 rho | .69522501 (fraction of variance due to u_i) ---------------------------------------------------------------------------------
Code:
. xtreg mliq L.Hqualitybank Hbank_Crisis size nim racr loanstoassets depositsloans L.Crisisdummy fedfund tedspread > changeinflation,fe cluster(gvkey) Fixed-effects (within) regression Number of obs = 3755 Group variable: gvkey Number of groups = 129 R-sq: within = 0.2504 Obs per group: min = 1 between = 0.2905 avg = 29.1 overall = 0.3465 max = 54 F(11,128) = 6.87 corr(u_i, Xb) = -0.1019 Prob > F = 0.0000 (Std. Err. adjusted for 129 clusters in gvkey) --------------------------------------------------------------------------------- | Robust mliq | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- Hqualitybank | L1. | -.0048897 .0041074 -1.19 0.236 -.0130169 .0032375 | Hbank_Crisis | .0015343 .0045093 0.34 0.734 -.0073881 .0104566 size | .0037692 .0047744 0.79 0.431 -.0056777 .0132162 nim | -.0034188 .0028417 -1.20 0.231 -.0090417 .0022041 racr | .0016591 .0009276 1.79 0.076 -.0001762 .0034944 loanstoassets | -.0460795 .0367998 -1.25 0.213 -.1188941 .0267351 depositsloans | .0278637 .0113282 2.46 0.015 .0054488 .0502786 | Crisisdummy | L1. | .0057046 .0033819 1.69 0.094 -.0009871 .0123963 | fedfund | -.0014908 .0008609 -1.73 0.086 -.0031942 .0002127 tedspread | -.0030266 .0018055 -1.68 0.096 -.0065991 .0005458 changeinflation | .0001491 .0018807 0.08 0.937 -.0035722 .0038705 _cons | -.0023362 .0785628 -0.03 0.976 -.1577861 .1531137 ----------------+---------------------------------------------------------------- sigma_u | .03901529 sigma_e | .02583222 rho | .69522501 (fraction of variance due to u_i) ---------------------------------------------------------------------------------
Thank you in advance for your answers!
Yannick
Comment