Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Sensitivity analysis:Sensitivity of my regression model to varying sub-samples of my data.

    Hi Statalisters,

    I want to find out how sensitive the results of my logistic model (or the outputs) are to varying subsamples/ sample sizes) within my data set. Sample data set by "dataex". My outcome is status (binary), co variates are CYP2A_hom(binary), ensmoke( dummy for smoking). I have another variable called Risk with 3 categories, 0=Normal, 1= low risk, 2=high risk. My logistic model is

    Code:
    logistic status CYP2A_hom#ensmoke
    I want to run this model in a) the full data set, b) among participants whose risk is not equal to 2 and 3) whose risk is not equal to 2 and 3 combined. Basically, I want to know how sensitive my model is towards these 3 sample sizes defined by Risk. Well I could run the model in the three data sets and compare the results. But I have actually multiple models of interaction to run with multiple binary covariates similar to CYP2A_hom. And what I want to know is, is there a formal way in Stata (Some kind of a quantitative/relative measure in Stata program that I can report) to assess the sensitivity of my model outputs towards these 3 risk groups?. If so, how should I perform the analysis/report the measure?


    Code:
    * Example generated by -dataex-. To install: ssc install dataex
    clear
    input byte status float(CYP2A_hom ensmoke Risk)
    0 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 0 2
    0 0 1 0
    0 1 1 0
    1 0 1 2
    0 0 0 0
    0 0 0 0
    1 0 1 2
    0 0 0 0
    0 0 1 0
    1 1 1 0
    0 0 1 2
    0 1 1 0
    1 1 1 0
    1 0 1 2
    0 0 0 1
    0 0 0 0
    0 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 1
    0 0 0 0
    1 0 1 2
    1 0 0 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    0 0 0 0
    0 1 1 0
    1 0 1 2
    0 1 1 0
    0 1 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    0 0 1 0
    0 0 0 0
    0 1 1 0
    0 0 1 0
    0 1 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 1 0 0
    0 0 1 0
    0 0 0 0
    1 0 1 1
    0 0 1 2
    1 0 1 2
    0 0 1 0
    0 0 1 0
    0 0 0 0
    1 0 0 0
    0 0 1 0
    0 1 1 0
    0 0 1 1
    0 0 1 0
    1 1 1 0
    0 1 1 0
    0 0 1 0
    1 0 0 0
    0 0 1 2
    1 0 1 2
    0 1 1 2
    1 0 1 0
    0 1 0 0
    1 1 0 2
    0 0 1 0
    1 1 1 2
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 1 0 0
    1 1 1 0
    0 0 1 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 1 1 0
    0 0 0 0
    1 1 1 2
    0 0 1 0
    1 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 1 1 0
    0 1 0 0
    1 0 1 0
    0 0 1 1
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 1
    1 0 1 0
    0 1 1 0
    1 0 1 1
    0 0 1 0
    1 1 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 1
    0 0 1 0
    1 0 1 0
    0 0 1 1
    1 0 1 2
    0 0 0 2
    1 1 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 0 0 2
    0 0 1 0
    1 0 1 1
    0 1 1 0
    1 0 1 0
    0 0 1 2
    1 0 0 0
    0 0 1 2
    1 1 1 0
    0 1 0 2
    1 0 1 1
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 2
    0 1 1 0
    1 0 1 2
    0 0 1 0
    1 1 1 2
    0 0 1 2
    1 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 . 1 0
    1 0 1 2
    0 0 1 1
    1 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 1 0
    1 0 0 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 0 0 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 1 1 2
    0 1 0 0
    1 1 1 2
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    1 1 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 1 1 0
    0 0 0 0
    1 0 0 2
    0 0 1 0
    1 1 0 2
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    0 0 1 0
    0 0 1 0
    0 0 0 0
    0 0 1 0
    0 0 0 0
    0 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 2
    0 1 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 1
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 2
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 0 1 2
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 0 0
    0 1 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 2
    0 1 0 2
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 1 1 0
    1 1 1 2
    0 0 1 0
    0 0 0 1
    1 1 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 1
    0 1 0 0
    1 1 1 0
    0 1 0 0
    1 0 1 1
    0 0 1 1
    1 0 0 0
    0 0 0 0
    1 1 1 0
    0 1 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 2
    0 1 1 0
    1 1 1 0
    0 0 1 2
    0 0 1 0
    1 0 0 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 1
    1 0 1 0
    0 0 1 2
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 0 0
    0 0 0 0
    1 0 1 0
    0 0 1 2
    1 0 0 0
    0 0 0 2
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 1
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 1 1 2
    0 1 1 1
    1 0 0 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    0 1 1 2
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 1 2
    1 1 1 2
    0 0 1 0
    1 0 1 1
    0 0 0 2
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 1 0 0
    0 0 1 0
    1 0 1 0
    0 0 0 2
    1 0 1 2
    0 0 1 0
    1 0 0 2
    0 0 0 0
    1 0 1 2
    0 0 1 2
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    0 0 1 0
    1 0 1 0
    0 1 0 0
    0 1 1 0
    1 0 1 2
    0 0 1 0
    1 0 0 2
    0 1 1 0
    1 0 1 2
    1 0 1 0
    0 0 0 0
    1 0 1 2
    1 0 0 2
    0 0 1 0
    1 0 0 0
    0 0 0 0
    1 1 1 0
    0 1 1 0
    1 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 1 1 0
    1 0 1 1
    0 1 0 0
    1 0 1 0
    0 0 0 0
    1 1 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 0 2
    0 0 0 0
    1 1 1 0
    0 0 0 0
    1 1 1 0
    0 0 0 0
    1 . 0 2
    0 0 0 0
    1 0 1 0
    0 1 0 0
    1 0 0 2
    1 0 1 0
    0 0 1 1
    1 0 0 2
    0 0 1 0
    1 0 1 2
    0 0 1 2
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 2
    1 1 1 0
    0 0 0 0
    1 0 0 0
    0 0 1 0
    1 0 1 0
    0 1 0 0
    1 1 1 0
    0 1 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 1 0 0
    1 0 0 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    0 1 0 0
    1 1 0 2
    0 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 1 1 2
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 1
    0 0 0 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 1
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    0 0 1 0
    1 0 0 0
    0 1 1 0
    1 0 1 1
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 1 1 0
    0 0 0 0
    1 0 1 2
    0 0 0 0
    1 0 1 2
    0 0 1 0
    0 0 1 1
    1 0 1 2
    0 0 1 0
    1 0 0 0
    0 0 1 1
    0 0 1 0
    1 0 0 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 1
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    0 0 1 2
    1 0 0 2
    0 0 0 2
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 1 0 0
    1 0 0 0
    0 1 1 0
    1 0 1 1
    1 0 1 0
    0 1 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 0 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    1 0 1 2
    0 0 0 2
    0 0 1 0
    1 0 0 2
    0 0 1 0
    0 0 1 2
    1 0 0 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 0 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    1 0 1 0
    0 0 1 0
    1 1 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 1 1 0
    0 0 0 0
    1 0 0 0
    0 0 1 0
    1 0 1 2
    0 0 1 2
    1 0 1 0
    0 0 1 0
    1 1 0 2
    0 0 0 0
    1 0 0 2
    0 0 0 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    1 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 0
    1 1 0 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    1 1 1 2
    0 0 1 2
    1 0 0 2
    0 1 0 2
    1 0 1 2
    0 0 1 0
    1 0 0 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 0 2
    0 0 1 0
    0 0 1 0
    1 0 0 0
    0 1 0 0
    1 0 1 2
    0 0 1 2
    1 0 0 0
    0 1 1 0
    0 0 1 2
    1 1 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    1 0 1 1
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 1 1 1
    0 1 1 0
    1 0 1 1
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 0 2
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 1 1 0
    0 1 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 1 1 0
    1 0 0 0
    0 1 1 0
    1 1 0 2
    0 0 1 0
    0 0 1 2
    1 0 1 0
    0 0 0 0
    0 0 1 0
    1 0 1 0
    0 0 1 0
    0 0 1 0
    1 1 1 0
    0 1 1 0
    1 . 1 0
    1 1 1 2
    0 0 1 0
    1 0 0 0
    1 0 1 2
    0 0 1 2
    0 1 1 0
    1 0 1 1
    0 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 1 1 2
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 0 0
    1 0 0 0
    0 0 1 0
    1 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 0
    0 0 1 2
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 0 0 0
    0 0 1 0
    1 0 1 2
    0 0 1 2
    1 1 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 1 0 2
    0 0 1 0
    1 1 1 0
    0 0 1 0
    1 0 0 2
    0 0 1 2
    1 0 1 0
    0 0 0 2
    1 0 1 2
    0 1 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 2
    0 0 1 0
    1 0 1 2
    0 0 1 0
    1 1 1 2
    0 0 1 2
    1 1 1 2
    0 0 0 0
    1 1 1 2
    0 0 0 0
    1 0 1 0
    0 1 1 0
    1 0 1 0
    0 0 0 0
    1 0 1 0
    0 0 1 0
    1 1 1 2
    0 0 1 0
    0 1 1 0
    1 0 1 0
    0 0 0 0
    1 0 0 0
    0 1 1 0
    1 0 0 0
    1 0 1 0
    1 0 1 0
    1 0 1 0
    1 0 1 2
    1 0 1 0
    end
    label values status Stat
    label def Stat 0 "Control", modify
    label def Stat 1 "Case", modify
    label values CYP2A_hom cyp_hom
    label def cyp_hom 0 "TT/CC", modify
    label def cyp_hom 1 "CT", modify
    label values Risk Risk
    label def Risk 0 "Normal", modify
    label def Risk 1 "low risk", modify
    label def Risk 2 "high risk", modify
    Thanks
Working...
X