Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Problems with model convergence, identification using -cmp-

    I am having trouble getting convergence when using -cmp- to fit an instrumental variable-type estimator of the effect of health insurance (Insuri) on choice of "health" provider (Provtypei) consulted in developing country X. My main outcome (Provtypei) is a multinomial variable with 4 categories, while the potentially endogenous covariate (Insuri) is a multinomial variable with 5 categories.

    This is the model I am fitting:

    Provtypei=b0 + b1Insur1i + b2Insur2i + b3Insur3i +b4Insur4i + Xb + ei

    Where Provtypei = Type of provider chosen (No care (Ref.); Traditional healer; Public sector; Private sector) and Insur#i are health insurance dummies as follows:
    * Insur1i = Civil servants' insurance--4.97% of sample
    * Insur2i = Formal private sector employees' insurance--3.65% of sample
    * Insur3i = Indigent health insurance--11.44% of sample
    * Insur4i = Other type of health insurance-- 4.23% of sample
    * "No insurance" is the reference category and the largest (~75.7% do not have health insurance)
    Information on insurance in Country X:
    In Country X, health insurance coverage is almost exclusively obtained either through employment. Civil servants are automatically enroled in Insur1 and a small percentage of their salary taken monthly to pay the premium. Private sector employers are mandated to offer health insurance to their employees and have the option of offering their own health insurance program, provided that coverage is equal to or more superior than Insur2. Most employers opt to offer the government-run Insur2 program. For the indigent insurance scheme (Insur3), household eligibility is determined by set criteria (assessed via household micropoverty assessment) at the district level (sub-municipality). The last category of insurance is a catch-all category which includes reimbursement (1.22%), voluntary private health insurance (0.88% of sample), employer's clinic (0.44%), health savings (0.04%), and multiple health insurance (1.74%).

    Candidate instrumental variable:
    Given the above information on how health insurance is generally obtained in Country X, I used type of occupation as the "instrumental variable." Note: I both have information on type of occupation of the household head and household income (using household consumption as proxy) in my dataset. In both bivariate and adjusted models, household head occupation is NOT related to Provtypei and IS related to Insuri, which means that it satisfies the criteria that an IV cannot be directly related to the outcome and must be directly related to the endogenous variable.

    Problems fitting the model in Stata:
    P
    eel (2014) mentioned Roodman's (2011) -cmp- command as one of commands to use when both the main outcome and endogenous regressor are multinomial in his recent article summarizing current Stata commands, R packages, and SAS procs on handling endogeneity for different variable types. For my model, I specified that both outcomes are multinomial using the required -indicators()- option for the command. Initially, I had fit the model controlling for individual, community, and health system variables using a macro ("$ALLVARS"). Stata informed me from the 0th iteration that the log psuedolikelihood was not concave. I removed the macro to see whether my instrument was the one causing the problem, and found that it, in fact, WAS causing the convergence problem (I may have other model covariates causing the problem, but if the instrument itself was problematic, it's a bit pointless to try and which control variables cause issues).

    Burning questions:
    1. Since the log pseudolikelihood was not concave for all iterations, does that mean household head occupation is not an appropriate instrumental variable (IV)? I'd hate to have to find another instrumental variable, since household head occupation seemed like a perfect candidate IV based on the criteria for IVs.
    2. Related to 1.) above, if the log pseudolikelihood is not concave, does it mean my model would never converge (model would never be identified) if I kept the household head occupation as my IV, or does it mean I need to tinker with that variable some more (e.g. group some categories together)?
    3. Finally, going back to the theoretical motivation for using IVs, (i.e. omitted variable bias), if I have the occupation of the household head, is an IV approach really necessary here? Would it be appropriate for me to just stick household head occupation in the structural model (Provtypei=b0 + b1Insur1i + b2Insur2i + b3Insur3i +b3Insur4i + b4Insur4i + b5Job1i + b6Job2i +b7Job3i + Xb + ei)? If not, what would I be missing by failing to use an IV approach?

    References:
    1. Peel, M. J. (2014). Addressing unobserved endogeneity bias in accounting studies: control and sensitivity methods by variable type. Accounting and Business Research, 44(5), 545–571. http://doi.org/10.1080/00014788.2014.926249
    2. Roodman, D. (2011). Fitting fully observed recursive mixed-process models with cmp. The Stata Journal, 11(2), 159–206.

    Stata output

    I present below the output that I get when I try to fit the multinomial/multinomial IV model with occupation. For simplicity's sake, I did not control for other variables here. Note error code r(430), which, according to documentation is:

    [P] error . . . . . . . . . . . . . . . . . . . . . . . . Return code 430
    convergence not achieved;
    You have estimated a maximum likelihood model, and Stata's
    maximization procedure failed to converge to a solution;
    see [R] maximize. Check if the model is identified.




    Code:
    . cmp setup
    $cmp_out      = 0
    $cmp_missing  = .
    $cmp_cont     = 1
    $cmp_left     = 2
    $cmp_right    = 3
    $cmp_probit   = 4
    $cmp_oprobit  = 5
    $cmp_mprobit  = 6
    $cmp_int      = 7
    $cmp_trunc    = 8 (deprecated)
    $cmp_roprobit = 9
    
    . cmp (deliver= i.insur ) (insur=i.jobhead2), ind($cmp_mprobit $cmp_mprobit) nolrt svy
    
    Fitting individual models as starting point for full model fit.
    Note: For programming reasons, these initial estimates may deviate from your specification.
          For exact fits of each equation alone, run cmp separately on each.
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   0,   1277)    =         .
                                                    Prob > F           =         .
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           _cons |  -.7863826   .0477122   -16.48   0.000    -.8799856   -.6927796
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   4,   1274)    =      3.94
                                                    Prob > F           =    0.0035
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           insur |
          Insur1 |  -.1617394   .1046839    -1.55   0.123    -.3671108    .0436319
          Insur2 |  -.0271466   .0845116    -0.32   0.748    -.1929434    .1386502
          Insur3 |  -.2788084   .1439938    -1.94   0.053    -.5612989    .0036821
          Insur4 |  -.3659131   .1150943    -3.18   0.002    -.5917079   -.1401184
                 |
           _cons |  -.8058316   .0436262   -18.47   0.000    -.8914185   -.7202446
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   4,   1274)    =     18.14
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y3 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           insur |
          Insur1 |   .6722371   .0991759     6.78   0.000     .4776715    .8668026
          Insur2 |   .4135623   .0720892     5.74   0.000     .2721361    .5549885
          Insur3 |   .0791988   .1230386     0.64   0.520    -.1621812    .3205787
          Insur4 |   .1020489   .1503451     0.68   0.497    -.1929016    .3969995
                 |
           _cons |  -1.258681   .0393746   -31.97   0.000    -1.335927   -1.181435
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   4,   1274)    =     23.09
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y4 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           insur |
          Insur1 |   .1367223   .0948118     1.44   0.150    -.0492816    .3227262
          Insur2 |  -.4902786   .0761394    -6.44   0.000    -.6396507   -.3409065
          Insur3 |   .5888061   .1060001     5.55   0.000     .3808525    .7967596
          Insur4 |   .4976108   .1230297     4.04   0.000     .2562483    .7389733
                 |
           _cons |  -.1001873   .0440493    -2.27   0.023    -.1866043   -.0137704
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   0,   1277)    =         .
                                                    Prob > F           =         .
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y5 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           _cons |   .6969803   .0299022    23.31   0.000     .6383175    .7556431
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   3,   1275)    =    150.73
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y6 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        jobhead2 |
          Other  |   -.149534   .1183097    -1.26   0.206    -.3816368    .0825688
          Gov't  |   1.694554   .1275017    13.29   0.000     1.444418     1.94469
        Private  |   .0170933   .1347828     0.13   0.899    -.2473268    .2815134
                 |
           _cons |  -1.902193   .1048397   -18.14   0.000     -2.10787   -1.696516
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   3,   1275)    =      7.68
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y7 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        jobhead2 |
          Other  |   .0755784   .0871146     0.87   0.386    -.0953251    .2464819
          Gov't  |  -.6259403   .1757085    -3.56   0.000    -.9706493   -.2812313
        Private  |  -.1521658   .0986393    -1.54   0.123    -.3456787    .0413471
                 |
           _cons |  -1.183164   .0844739   -14.01   0.000    -1.348887   -1.017442
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   3,   1275)    =     23.78
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y8 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        jobhead2 |
          Other  |  -.2138041   .1166065    -1.83   0.067    -.4425654    .0149573
          Gov't  |   .1024891   .1631899     0.63   0.530    -.2176606    .4226389
        Private  |    .436934   .1132295     3.86   0.000     .2147978    .6590702
                 |
           _cons |  -1.867931   .1086269   -17.20   0.000    -2.081037   -1.654824
    ------------------------------------------------------------------------------
    (running probit on estimation sample)
    
    Survey: Probit regression
    
    Number of strata   =         1                  Number of obs      =      5014
    Number of PSUs     =      1278                  Population size    = 4175.5248
                                                    Design df          =      1277
                                                    F(   3,   1275)    =     20.69
                                                    Prob > F           =    0.0000
    
    ------------------------------------------------------------------------------
                 |             Linearized
      _mp_cmp_y9 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
        jobhead2 |
          Other  |  -.2692171   .1168832    -2.30   0.021    -.4985214   -.0399129
          Gov't  |   .1441257   .1428621     1.01   0.313    -.1361444    .4243958
        Private  |   .3979316   .1140775     3.49   0.001     .1741317    .6217315
                 |
           _cons |  -1.763148   .1117127   -15.78   0.000    -1.982309   -1.543988
    ------------------------------------------------------------------------------
    
    Fitting full model.
    
    Likelihoods for 5014 observations involve cumulative normal distributions above dimension 2.
    Using ghk2() to simulate them. Settings:
        Sequence type = halton
        Number of draws per observation = 142
        Include antithetic draws = no
        Scramble = no
        Prime bases = 2 3 5 7 11 13 17 19
    Each observation gets different draws, so changing the order of observations in the data set would change the results.
    
    Iteration 0:   log pseudolikelihood = -8676.2236  (not concave)
    Iteration 1:   log pseudolikelihood = -8642.3991  (not concave)
    Iteration 2:   log pseudolikelihood = -8565.2511  (not concave)
    Iteration 3:   log pseudolikelihood =  -8517.411  (not concave)
    Iteration 4:   log pseudolikelihood =  -8498.342  (not concave)
    Iteration 5:   log pseudolikelihood = -8491.4476  (not concave)
    Iteration 6:   log pseudolikelihood = -8491.0405  (not concave)
    cannot compute an improvement -- discontinuous region encountered
    convergence not achieved
    convergence not achieved
    r(430);
    Last edited by Hawa Harahap; 05 Jan 2016, 11:00.

  • #2
    Hawa, you probably need to include the iia option in each equation, which specifies that there are not cross-equation correlations. This is generally needed because there are no alternative-specific regressors: the utility equation for each choice has the same regressors. As you can see from the initial-fit output, the mprobit equations are exploded into a total of 8 or so individual utility equations. By default, cmp allows the errors in all these equations to be cross-correlated so that's roughly an extra 8*(8-1)/2 parameters to be estimated, and it can just be too much. Try starting with:

    cmp (deliver= i.insur, iia) (insur=i.jobhead2, iia), ind($cmp_mprobit $cmp_mprobit) nolrt svy

    Comment


    • #3
      David, thanks for the tip! I will play with it and report back to the group with what I find

      Comment


      • #4
        I tried the code and several variations, but it's still running for now (3 hrs later). Maybe the small cell frequencies is the culprit. For reference, here they are:

        Main outcome (deliver)*potentially endogenous predictor (insur)
        Code:
        ----------------------------------------------------------
                  |           Health insurance coverage           
          deliver | insur0  insur1  insur2  insur3  insur4   Total
        ----------+-----------------------------------------------
         provtyp0 |    713       8     153       8      18     901
         provtyp1 |    664      35      97      21      21     838
         provtyp2 |    329      58      95      18      22     522
         provtyp3 |   1454     107     132     105     116    1914
                  |
            Total |   3161     208     477     152     177    4176
        ----------------------------------------------------------
        Potentially endogenous predictor (insur)*potential instrument(jobhead2)
        Code:
        ------------------------------------------------------------
        Health    |
        insurance |                  Job of hh head                 
        coverage  | Unemploy  Informal     Gov't   Private     Total
        ----------+-------------------------------------------------
           insur0 |      406      1849       125       782      3161
           insur1 |       15        46       114        32       208
           insur2 |       61       308        10        99       477
           insur3 |       16        43        11        83       152
           insur4 |       20        48        14        94       177
                  |
            Total |      519      2293       274      1090      4176
        ------------------------------------------------------------

        Main outcome (deliver)*potential instrument (jobhead2)
        Code:
        ------------------------------------------------------------
                  |                  Job of hh head                 
          deliver | Unemploy  Informal     Gov't   Private     Total
        ----------+-------------------------------------------------
         provtyp0 |      102       620        18       161       901
         provtyp1 |       90       501        52       195       838
         provtyp2 |       77       249        56       140       522
         provtyp3 |      250       923       148       593      1914
                  |
            Total |      519      2293       274      1090      4176
        ------------------------------------------------------------

        Because of that, I got the idea that the culprit for non-convergence are small sample sizes (e.g. provtyp0*insur1) and I collapsed my insurance category into binary, since only 25% of my sample of 4,176 (weighted) have insurance. This model works! But, I have a question now about the output. Is there a way to jointly test anthrho? Correct me if I am wrong: It looks like there is evidence of endogeneity for /atanhrho_25, which I assume is the disturbance correlation for the joint estimation of "deliver type 2"=Any_Insurance and Any_Insurance=iv_headgov + iv_headpri. If only some, but not all of the atanhrhos are significant, does that mean there is endogeneity overall or just for that equation? In other words, are the anthrhos to be interpreted jointly or do they need to be interpreted independently?

        I also noticed that there is not an overall model F-test/model p-value in the output for the joint model. Is this normal? Note my condition numbers were >>>>> 20 (here 3466.7119). Is this a problem?

        Code:
        . cmp (deliver= i.ins_any $ALLVARS3,iia) (ins_any=iv_headgov iv_headpri $ALLVARS3, iia), ind($cmp_mp
        > robit $cmp_probit) nolrt svy difficult
        
        ....
        
        Warning: regressor matrix for ins_any equation appears ill-conditioned. (Conditio
        > n number = 3466.7119.)
        This might prevent convergence. If it does, and if you have not done so already,
        > you may need to remove nearly
        collinear regressors to achieve convergence. Or you may need to add a nrtolerance
        > (#) or nonrtolerance option to the command line.
        See cmp tips.
        
        Fitting full model.
        
        Likelihoods for 5014 observations involve cumulative normal distributions above d
        > imension 2.
        Using ghk2() to simulate them. Settings:
            Sequence type = halton
            Number of draws per observation = 142
            Include antithetic draws = no
            Scramble = no
            Prime bases = 2 3 5 7
        Each observation gets different draws, so changing the order of observations in t
        > he data set would change the results.
        
        Iteration 0:   log pseudolikelihood = -6702.7027  (not concave)
        Iteration 1:   log pseudolikelihood =  -5825.356  (not concave)
        Iteration 2:   log pseudolikelihood = -5762.9764  (not concave)
        Iteration 3:   log pseudolikelihood = -5755.3088  (not concave)
        Iteration 4:   log pseudolikelihood = -5747.1137  (not concave)
        Iteration 5:   log pseudolikelihood = -5740.5334  (not concave)
        Iteration 6:   log pseudolikelihood = -5738.9436  (not concave)
        Iteration 7:   log pseudolikelihood =   -5738.03  (not concave)
        Iteration 8:   log pseudolikelihood = -5737.1033  (not concave)
        Iteration 9:   log pseudolikelihood = -5733.3052  (not concave)
        Iteration 10:  log pseudolikelihood = -5732.4057  (not concave)
        Iteration 11:  log pseudolikelihood = -5731.4464  (not concave)
        Iteration 12:  log pseudolikelihood =  -5731.038  (not concave)
        Iteration 13:  log pseudolikelihood = -5730.7006  (not concave)
        Iteration 14:  log pseudolikelihood = -5730.3994  (not concave)
        Iteration 15:  log pseudolikelihood = -5729.9292  (not concave)
        Iteration 16:  log pseudolikelihood = -5729.4921  (not concave)
        Iteration 17:  log pseudolikelihood = -5726.1418  
        Iteration 18:  log pseudolikelihood =  -5719.955  
        Iteration 19:  log pseudolikelihood = -5717.6313  
        Iteration 20:  log pseudolikelihood = -5717.6017  
        Iteration 21:  log pseudolikelihood = -5717.6008  
        Iteration 22:  log pseudolikelihood = -5717.6008  
        
        Mixed-process regression
        
        Number of strata   =         1                  Number of obs      =      5014
        Number of PSUs     =      1278                  Population size    = 4175.5248
                                                        Design df          =      1277
                                                        F(   0,   1277)    =         .
                                                        Prob > F           =         .
        
         ( 1)  [_outcome_1_1]0b.ins_any = 0
         ( 2)  [_outcome_1_1]0b.agecat3 = 0
         ( 3)  [_outcome_1_1]1b.afbc2 = 0
         ( 4)  [_outcome_1_1]0b.pcat2 = 0
         ( 5)  [_outcome_1_1]0b.numancc = 0
         ( 6)  [_outcome_1_2]0b.ins_any = 0
         ( 7)  [_outcome_1_2]0b.agecat3 = 0
         ( 8)  [_outcome_1_2]1b.afbc2 = 0
         ( 9)  [_outcome_1_2]0b.pcat2 = 0
         (10)  [_outcome_1_2]0b.numancc = 0
         (11)  [_outcome_1_3]0b.ins_any = 0
         (12)  [_outcome_1_3]0b.agecat3 = 0
         (13)  [_outcome_1_3]1b.afbc2 = 0
         (14)  [_outcome_1_3]0b.pcat2 = 0
         (15)  [_outcome_1_3]0b.numancc = 0
         (16)  [ins_any]0b.agecat3 = 0
         (17)  [ins_any]1b.afbc2 = 0
         (18)  [ins_any]0b.pcat2 = 0
         (19)  [ins_any]0b.numancc = 0
         (20)  [_outcome_1_0]_cons = 0
        --------------------------------------------------------------------------------
                       |             Linearized
                       |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        ---------------+----------------------------------------------------------------
        _outcome_1_0   |
                 _cons |          0  (omitted)
        ---------------+----------------------------------------------------------------
        _outcome_1_1   |
               ins_any |
                  Yes  |   1.345633   .4912673     2.74   0.006     .3818538    2.309413
                       |
               agecat3 |
                25-29  |  -.1354709   .1360026    -1.00   0.319     -.402284    .1313422
                30-34  |  -.2021272   .2027789    -1.00   0.319    -.5999436    .1956892
                35-39  |  -.1916223   .2693624    -0.71   0.477    -.7200637    .3368191
                  >40  |  -.4117476   .3360907    -1.23   0.221    -1.071098     .247603
                       |
              edcat2_2 |   .1907259   .1377758     1.38   0.167    -.0795658    .4610177
              edcat2_3 |   .5750093   .1502049     3.83   0.000     .2803338    .8696848
              edcat2_4 |   1.404681   .4144912     3.39   0.001     .5915224     2.21784
           paid_employ |  -.0897605   .0952552    -0.94   0.346    -.2766344    .0971133
                       |
                 afbc2 |
                20-24  |   .1814382   .1433267     1.27   0.206    -.0997434    .4626198
                25-29  |   .0331792   .1997342     0.17   0.868     -.358664    .4250223
                30-34  |   .0084243   .2727417     0.03   0.975    -.5266467    .5434954
                  35+  |   .1637029   .3348677     0.49   0.625    -.4932485    .8206542
                       |
                 pcat2 |
                    1  |  -.1385919   .1208256    -1.15   0.252    -.3756305    .0984467
          More than 1  |   .0473376   .2130474     0.22   0.824    -.3706238    .4652991
                       |
               numancc |
                  4-8  |   .3645493   .1384764     2.63   0.009     .0928831    .6362155
                 9-11  |   .3944922   .1685618     2.34   0.019     .0638038    .7251807
                12-44  |   .3161457   .2377817     1.33   0.184    -.1503399    .7826314
                       |
           hedcat2_2_3 |   .0981803   .1232728     0.80   0.426    -.1436592    .3400199
           hedcat2_2_4 |     .30811    .139627     2.21   0.028     .0341866    .5820334
           hedcat2_2_5 |   .4105428   .3195019     1.28   0.199    -.2162635    1.037349
           hedcat2_2_6 |   .0577525    .140505     0.41   0.681    -.2178935    .3333985
           comm_parity |   .0332979   .0993734     0.34   0.738    -.1616553     .228251
          comm_skilled |   .0468442   .0031458    14.89   0.000     .0406727    .0530156
        comm_numanc_~p |  -.0438189   .0194443    -2.25   0.024    -.0819652   -.0056726
           comm_educhs |  -.0088219   .0017016    -5.18   0.000      -.01216   -.0054837
           literacy2_2 |  -.0055592   .2057811    -0.03   0.978    -.4092653    .3981469
           usd_iexpae2 |   .0025656   .0011583     2.22   0.027     .0002933    .0048379
             vehicle_2 |   .1798208   .0935732     1.92   0.055    -.0037533    .3633949
        i2_mindistfa~f |  -.0020693   .0152247    -0.14   0.892    -.0319375    .0277989
        i2_mindistfa~k |   .0265455   .0299285     0.89   0.375    -.0321688    .0852599
        i2_mindistfa~a |  -.0047236   .0195081    -0.24   0.809    -.0429951    .0335479
          comm_knowpub |  -.0107346   .0029934    -3.59   0.000    -.0166071    -.004862
         comm_knowpriv |   .0016044   .0037578     0.43   0.669    -.0057678    .0089765
        comm_literacy2 |  -.0045909   .0034783    -1.32   0.187    -.0114148    .0022331
             hxcompl_2 |  -.0820753   .1191572    -0.69   0.491    -.3158407    .1516902
            length_km2 |  -.0000481   .0000549    -0.88   0.381    -.0001558    .0000596
                 urban |  -.3082171   .1050526    -2.93   0.003    -.5143117   -.1021225
                    jb |  -.3422726   .3359564    -1.02   0.308     -1.00136    .3168146
                 rainy |  -.1990418   .0891931    -2.23   0.026    -.3740229   -.0240606
               byear_2 |   .1042946   .1840993     0.57   0.571    -.2568757     .465465
               byear_3 |  -.0096688   .1769641    -0.05   0.956     -.356841    .3375035
               byear_4 |  -.1136563   .1755603    -0.65   0.517    -.4580746     .230762
               byear_5 |    .055332   .1846138     0.30   0.764    -.3068477    .4175117
               byear_6 |  -.0531576   .1810278    -0.29   0.769    -.4083023     .301987
               byear_7 |   .3996688   .3040063     1.31   0.189    -.1967379    .9960754
         usd_idelexp_0 |     .00161    .004002     0.40   0.688    -.0062413    .0094613
         usd_idelexp_1 |  -.0016738   .0009719    -1.72   0.085    -.0035804    .0002328
         usd_idelexp_2 |   .0006978   .0002364     2.95   0.003      .000234    .0011615
         usd_idelexp_3 |  -.0001685   .0003839    -0.44   0.661    -.0009215    .0005846
        aux_dens_hos~t |   76.84347   33.68469     2.28   0.023     10.76005    142.9269
        aux_dens_pus~s |   18.93742   7.859918     2.41   0.016     3.517649    34.35719
        aux_dens_pol~s |  -2.017368    1.09781    -1.84   0.066    -4.171078    .1363411
        aux_dens_phy~c |  -2.036025   .6033655    -3.37   0.001    -3.219722   -.8523287
        aux_dens_nurse |  -.3381177   .1803515    -1.87   0.061    -.6919356    .0157001
         exp_usd2005pc |  -.0438199   .0326692    -1.34   0.180    -.1079112    .0202713
                 _cons |  -2.223599   .5995014    -3.71   0.000    -3.399715   -1.047483
        ---------------+----------------------------------------------------------------
        _outcome_1_2   |
               ins_any |
                  Yes  |   .8827855   .6964179     1.27   0.205    -.4834635    2.249035
                       |
               agecat3 |
                25-29  |  -.0083994   .1546427    -0.05   0.957    -.3117812    .2949823
                30-34  |  -.0852659   .2357954    -0.36   0.718    -.5478548    .3773231
                35-39  |  -.1374138   .3243563    -0.42   0.672    -.7737436     .498916
                  >40  |  -.2950107   .3936751    -0.75   0.454    -1.067332    .4773104
                       |
              edcat2_2 |   .1997609   .1505588     1.33   0.185     -.095609    .4951307
              edcat2_3 |   .5969645   .1592321     3.75   0.000     .2845792    .9093498
              edcat2_4 |   1.695801   .4119364     4.12   0.000     .8876548    2.503948
           paid_employ |  -.0416445   .1103485    -0.38   0.706    -.2581289    .1748398
                       |
                 afbc2 |
                20-24  |   .1380607   .1578143     0.87   0.382    -.1715431    .4476645
                25-29  |   .2223526   .2173157     1.02   0.306    -.2039825    .6486877
                30-34  |   .2253269   .3215893     0.70   0.484    -.4055745    .8562283
                  35+  |   .3723507   .3865517     0.96   0.336    -.3859954    1.130697
                       |
                 pcat2 |
                    1  |  -.1222503   .1415143    -0.86   0.388    -.3998764    .1553758
          More than 1  |  -.2658586   .2306459    -1.15   0.249    -.7183451     .186628
                       |
               numancc |
                  4-8  |   .4175649   .1901976     2.20   0.028     .0444308     .790699
                 9-11  |    .557555   .1999057     2.79   0.005     .1653753    .9497347
                12-44  |   .7712645    .261706     2.95   0.003     .2578435    1.284685
                       |
           hedcat2_2_3 |   .0882221   .1588302     0.56   0.579    -.2233747    .3998189
           hedcat2_2_4 |   .2829274   .1452376     1.95   0.052    -.0020031    .5678579
           hedcat2_2_5 |    .544425   .3089831     1.76   0.078    -.0617452    1.150595
           hedcat2_2_6 |   .1336831   .1594333     0.84   0.402    -.1790969    .4464631
           comm_parity |   .2572016   .1326772     1.94   0.053    -.0030875    .5174908
          comm_skilled |   .0437315   .0031835    13.74   0.000     .0374861    .0499768
        comm_numanc_~p |  -.0030677   .0208224    -0.15   0.883    -.0439176    .0377821
           comm_educhs |  -.0009429   .0019501    -0.48   0.629    -.0047686    .0028827
           literacy2_2 |   .0664383   .2414638     0.28   0.783    -.4072711    .5401477
           usd_iexpae2 |   .0018728   .0012068     1.55   0.121    -.0004947    .0042404
             vehicle_2 |   .1800764   .1057913     1.70   0.089    -.0274675    .3876203
        i2_mindistfa~f |   .0226218   .0130549     1.73   0.083    -.0029897    .0482332
        i2_mindistfa~k |    .028949   .0476979     0.61   0.544    -.0646259    .1225239
        i2_mindistfa~a |   .0426777   .0190703     2.24   0.025     .0052651    .0800903
          comm_knowpub |   .0006835   .0056649     0.12   0.904      -.01043    .0117969
         comm_knowpriv |  -.0094254   .0038785    -2.43   0.015    -.0170344   -.0018164
        comm_literacy2 |  -.0093295   .0047791    -1.95   0.051    -.0187051    .0000462
             hxcompl_2 |   .2875289   .1236069     2.33   0.020      .045034    .5300238
            length_km2 |   .0000403   .0000633     0.64   0.524    -.0000838    .0001645
                 urban |   .2189598   .1038439     2.11   0.035     .0152363    .4226832
                    jb |  -.0468012   .2969822    -0.16   0.875    -.6294278    .5358254
                 rainy |  -.2287659   .1074147    -2.13   0.033    -.4394945   -.0180373
               byear_2 |   .0092034   .1886915     0.05   0.961     -.360976    .3793828
               byear_3 |   .0854777   .1920863     0.44   0.656    -.2913617    .4623172
               byear_4 |   .1120476   .1786797     0.63   0.531    -.2384906    .4625857
               byear_5 |   .2670187   .2005969     1.33   0.183    -.1265171    .6605544
               byear_6 |   .4467419   .1915354     2.33   0.020     .0709834    .8225005
               byear_7 |   .7768705   .3347609     2.32   0.020     .1201288    1.433612
         usd_idelexp_0 |  -.0170974   .0053636    -3.19   0.001    -.0276198   -.0065751
         usd_idelexp_1 |   4.05e-08   .0007206     0.00   1.000    -.0014136    .0014137
         usd_idelexp_2 |  -.0002103   .0003061    -0.69   0.492    -.0008109    .0003903
         usd_idelexp_3 |   .0003298   .0008101     0.41   0.684    -.0012595    .0019191
        aux_dens_hos~t |   -123.066   31.26073    -3.94   0.000     -184.394   -61.73792
        aux_dens_pus~s |   -3.92928   9.669032    -0.41   0.685    -22.89821    15.03965
        aux_dens_pol~s |   4.054328   1.443698     2.81   0.005     1.222049    6.886608
        aux_dens_phy~c |   1.566564   .5446311     2.88   0.004     .4980937    2.635034
        aux_dens_nurse |   .3730204   .2238786     1.67   0.096      -.06619    .8122307
         exp_usd2005pc |   .0918993   .0353005     2.60   0.009     .0226459    .1611527
                 _cons |  -4.260867   .7728461    -5.51   0.000    -5.777055    -2.74468
        ---------------+----------------------------------------------------------------
        _outcome_1_3   |
               ins_any |
                  Yes  |  -.5229649   .4946798    -1.06   0.291    -1.493439    .4475095
                       |
               agecat3 |
                25-29  |  -.0824884    .140488    -0.59   0.557    -.3581011    .1931243
                30-34  |  -.1438571   .2190098    -0.66   0.511    -.5735157    .2858015
                35-39  |  -.0404672   .2806827    -0.14   0.885    -.5911171    .5101827
                  >40  |  -.1103619   .3407666    -0.32   0.746    -.7788859     .558162
                       |
              edcat2_2 |   .2799286   .1435864     1.95   0.051    -.0017625    .5616198
              edcat2_3 |   .7314023   .1597202     4.58   0.000     .4180595    1.044745
              edcat2_4 |   2.042724   .4014443     5.09   0.000     1.255161    2.830287
           paid_employ |   .0682544   .0917322     0.74   0.457     -.111708    .2482168
                       |
                 afbc2 |
                20-24  |   .1902627   .1522474     1.25   0.212    -.1084199    .4889452
                25-29  |   .2624741   .2127551     1.23   0.218    -.1549138     .679862
                30-34  |   .3187744   .2957569     1.08   0.281    -.2614484    .8989973
                  35+  |   .1455407   .3518062     0.41   0.679     -.544641    .8357224
                       |
                 pcat2 |
                    1  |  -.0226277   .1210239    -0.19   0.852    -.2600553    .2147999
          More than 1  |  -.2604861   .2145238    -1.21   0.225    -.6813439    .1603717
                       |
               numancc |
                  4-8  |   .7294641    .172231     4.24   0.000     .3915773    1.067351
                 9-11  |   .7568603   .1780616     4.25   0.000     .4075349    1.106186
                12-44  |   .9045952   .2484632     3.64   0.000     .4171542    1.392036
                       |
           hedcat2_2_3 |   .0766656   .1351178     0.57   0.571    -.1884116    .3417428
           hedcat2_2_4 |   .4677266    .134429     3.48   0.001     .2040007    .7314525
           hedcat2_2_5 |   .7943959    .299376     2.65   0.008     .2070729    1.381719
           hedcat2_2_6 |   .1578438   .1456395     1.08   0.279    -.1278751    .4435628
           comm_parity |   .1742564   .1118033     1.56   0.119     -.045082    .3935947
          comm_skilled |    .059564   .0025171    23.66   0.000     .0546259    .0645021
        comm_numanc_~p |  -.0464495   .0187996    -2.47   0.014     -.083331   -.0095681
           comm_educhs |  -.0033688   .0016485    -2.04   0.041    -.0066029   -.0001347
           literacy2_2 |  -.1301561   .2310809    -0.56   0.573     -.583496    .3231838
           usd_iexpae2 |   .0028322   .0011506     2.46   0.014      .000575    .0050894
             vehicle_2 |   .3132021   .0934362     3.35   0.001     .1298967    .4965074
        i2_mindistfa~f |   .0230201   .0110809     2.08   0.038     .0012814    .0447588
        i2_mindistfa~k |  -.0451087   .0604504    -0.75   0.456    -.1637017    .0734842
        i2_mindistfa~a |   .0255077   .0185593     1.37   0.170    -.0109023    .0619177
          comm_knowpub |   .0036691   .0042529     0.86   0.388    -.0046744    .0120125
         comm_knowpriv |  -.0095104   .0042827    -2.22   0.027    -.0179124   -.0011084
        comm_literacy2 |  -.0000284   .0049908    -0.01   0.995    -.0098194    .0097626
             hxcompl_2 |   .2017096   .1195027     1.69   0.092    -.0327335    .4361527
            length_km2 |   .0000664   .0000466     1.43   0.154     -.000025    .0001578
                 urban |   .3897908   .0939446     4.15   0.000      .205488    .5740935
                    jb |   .0501118   .2782657     0.18   0.857    -.4957963    .5960199
                 rainy |  -.1820463   .0946594    -1.92   0.055    -.3677513    .0036588
               byear_2 |   .3821706   .1699435     2.25   0.025     .0487715    .7155698
               byear_3 |   .2737134   .1672705     1.64   0.102    -.0544416    .6018685
               byear_4 |   .3637189   .1588187     2.29   0.022     .0521447    .6752931
               byear_5 |   .4918341   .1748975     2.81   0.005     .1487162     .834952
               byear_6 |   .4284566   .1738672     2.46   0.014     .0873598    .7695534
               byear_7 |   .7997554   .3017453     2.65   0.008     .2077844    1.391727
         usd_idelexp_0 |  -.0039195   .0038902    -1.01   0.314    -.0115514    .0037124
         usd_idelexp_1 |  -.0002233   .0004839    -0.46   0.644    -.0011726     .000726
         usd_idelexp_2 |  -.0001095   .0002704    -0.40   0.686      -.00064    .0004211
         usd_idelexp_3 |  -.0008206   .0004579    -1.79   0.073    -.0017189    .0000776
        aux_dens_hos~t |  -53.11073   33.42756    -1.59   0.112    -118.6897    12.46824
        aux_dens_pus~s |  -37.74706   9.115972    -4.14   0.000    -55.63099   -19.86314
        aux_dens_pol~s |   2.321039   1.132651     2.05   0.041     .0989787      4.5431
        aux_dens_phy~c |   1.710129   .4711413     3.63   0.000     .7858327    2.634425
        aux_dens_nurse |  -.0281363   .1781525    -0.16   0.875    -.3776401    .3213674
         exp_usd2005pc |   .0590959   .0372056     1.59   0.112    -.0138948    .1320866
                 _cons |    -4.3842   .6865031    -6.39   0.000    -5.730998   -3.037402
        ---------------+----------------------------------------------------------------
        ins_any        |
            iv_headgov |   .7799497   .0914656     8.53   0.000     .6005104     .959389
            iv_headpri |    .261784   .0609189     4.30   0.000     .1422718    .3812962
                       |
               agecat3 |
                25-29  |   .0896495   .0896535     1.00   0.318    -.0862347    .2655338
                30-34  |   .0846873   .1181368     0.72   0.474    -.1470763    .3164508
                35-39  |   .1807702   .1586019     1.14   0.255    -.1303786    .4919191
                  >40  |   .1847193   .2080935     0.89   0.375    -.2235235     .592962
                       |
              edcat2_2 |  -.1192914   .0883195    -1.35   0.177    -.2925587    .0539759
              edcat2_3 |  -.2477111   .0924195    -2.68   0.007     -.429022   -.0664003
              edcat2_4 |   .0956533   .1235037     0.77   0.439    -.1466391    .3379458
           paid_employ |   .2340965   .0492246     4.76   0.000     .1375264    .3306665
                       |
                 afbc2 |
                20-24  |   .0711541   .0820575     0.87   0.386    -.0898282    .2321365
                25-29  |   .1594277   .1173637     1.36   0.175    -.0708192    .3896746
                30-34  |   .2118623   .1553582     1.36   0.173     -.092923    .5166477
                  35+  |   .1933926   .2103866     0.92   0.358    -.2193487    .6061339
                       |
                 pcat2 |
                    1  |   .1725853   .0637505     2.71   0.007      .047518    .2976525
          More than 1  |   .1072289    .119338     0.90   0.369    -.1268913     .341349
                       |
               numancc |
                  4-8  |   .2394484   .0908215     2.64   0.008     .0612726    .4176241
                 9-11  |   .2656392   .0916724     2.90   0.004     .0857942    .4454843
                12-44  |   .2783216    .106862     2.60   0.009     .0686773     .487966
                       |
           hedcat2_2_3 |    -.04988   .0858406    -0.58   0.561     -.218284     .118524
           hedcat2_2_4 |  -.0710241   .0803648    -0.88   0.377    -.2286857    .0866375
           hedcat2_2_5 |   .0758938   .1051746     0.72   0.471    -.1304401    .2822277
           hedcat2_2_6 |   .0368042    .089609     0.41   0.681    -.1389929    .2126012
           comm_parity |     .07598   .0657038     1.16   0.248    -.0529192    .2048792
          comm_skilled |    .002193   .0014944     1.47   0.142    -.0007387    .0051246
        comm_numanc_~p |    .011521   .0107781     1.07   0.285    -.0096236    .0326657
           comm_educhs |   .0000509   .0011019     0.05   0.963    -.0021108    .0022126
           literacy2_2 |  -.0509917   .1283156    -0.40   0.691    -.3027242    .2007408
           usd_iexpae2 |  -.0002641   .0004066    -0.65   0.516    -.0010617    .0005336
             vehicle_2 |   .0178294   .0573433     0.31   0.756     -.094668    .1303269
        i2_mindistfa~f |  -.0008363   .0157648    -0.05   0.958    -.0317641    .0300916
        i2_mindistfa~k |   .0181215   .0371695     0.49   0.626    -.0547984    .0910415
        i2_mindistfa~a |  -.0037741    .011021    -0.34   0.732    -.0253953    .0178471
          comm_knowpub |   .0075041    .003122     2.40   0.016     .0013792    .0136289
         comm_knowpriv |  -.0045397   .0029836    -1.52   0.128     -.010393    .0013137
        comm_literacy2 |   .0023836     .00285     0.84   0.403    -.0032075    .0079748
             hxcompl_2 |   .1557476   .0592586     2.63   0.009     .0394927    .2720026
            length_km2 |   .0000176   .0000344     0.51   0.608    -.0000498    .0000851
                 urban |   .0529493   .0720138     0.74   0.462    -.0883291    .1942277
                    jb |   -.289074   .1750597    -1.65   0.099    -.6325102    .0543622
                 rainy |   .0399326     .04584     0.87   0.384    -.0499974    .1298626
               byear_2 |   .1412876   .0890766     1.59   0.113    -.0334649    .3160402
               byear_3 |   .1530617   .0912112     1.68   0.094    -.0258786    .3320019
               byear_4 |   .0781684   .0945715     0.83   0.409    -.1073642     .263701
               byear_5 |  -.0659413   .0907752    -0.73   0.468    -.2440262    .1121436
               byear_6 |   .1076288   .0922957     1.17   0.244    -.0734391    .2886967
               byear_7 |  -.0916106   .1337346    -0.69   0.493    -.3539743     .170753
         usd_idelexp_0 |  -.0053413   .0026008    -2.05   0.040    -.0104435    -.000239
         usd_idelexp_1 |  -.0002961   .0005617    -0.53   0.598    -.0013979    .0008058
         usd_idelexp_2 |   -.000611   .0001567    -3.90   0.000    -.0009184   -.0003037
         usd_idelexp_3 |  -.0001435   .0003286    -0.44   0.662    -.0007881    .0005011
        aux_dens_hos~t |  -6.959131   23.01915    -0.30   0.762    -52.11863    38.20037
        aux_dens_pus~s |  -3.605734    6.36992    -0.57   0.571    -16.10239    8.890925
        aux_dens_pol~s |  -1.851005   .8106026    -2.28   0.023    -3.441265   -.2607461
        aux_dens_phy~c |   .0377221   .3120157     0.12   0.904    -.5743976    .6498418
        aux_dens_nurse |  -.0768215   .1195918    -0.64   0.521    -.3114396    .1577966
         exp_usd2005pc |   .0024779   .0253225     0.10   0.922    -.0472003    .0521562
                 _cons |  -1.727995   .4844321    -3.57   0.000    -2.678366   -.7776251
        ---------------+----------------------------------------------------------------
          /atanhrho_25 |  -.7028043   .3051563    -2.30   0.021    -1.301467   -.1041415
          /atanhrho_35 |  -.2644814   .3136838    -0.84   0.399    -.8798736    .3509108
          /atanhrho_45 |   .1464598    .210701     0.70   0.487    -.2668983    .5598179
        ---------------+----------------------------------------------------------------
                rho_25 |  -.6061447   .1930384                     -.8621004   -.1037666
                rho_35 |  -.2584823   .2927256                      -.706356     .337183
                rho_45 |   .1454215   .2062452                     -.2607363    .5078423
        --------------------------------------------------------------------------------

        Comment


        • #5
          And a brief follow-up question: Supposing I have alternative-specific regressors for provtype (e.g. pricetype0, pricetype1, pricetype2, pricetype3--which are average service prices at the county level for each provider type), would I then fit something like

          cmp (deliver= i.insur pricetype0 pricetype1 pricetype2 pricetype3) (insur=i.jobhead2 pricetype0 pricetype1 pricetype2 pricetype3, iia), ind($cmp_mprobit $cmp_mprobit) nolrt svy

          with the iia option removed from only the first equation?

          Comment


          • #6
            Yeah, that might work. If I understand right each pricetypeX is zero except for one provider type. More conventional would be to use the alternative-specific syntax, something like:

            cmp (deliver0= i.insur pricetype0)(deliver1= i.insur pricetype1)(deliver2= i.insur pricetype2)(deliver3= i.insur pricetype3) (insur=i.jobhead2 pricetype0 pricetype1 pricetype2 pricetype3, iia), ind(($cmp_mprobit $cmp_mprobit $cmp_mprobit $cmp_mprobit) $cmp_mprobit) nolrt svy

            Comment


            • #7
              OK, thanks!

              Comment


              • #8
                Following up on the suggestion to use the iia option. I did not get convergence using cmp (deliver= i.insur, iia) (insur=i.jobhead2, iia), ind($cmp_mprobit $cmp_mprobit) nolrt svy suggested above. I suspect it was the relatively small frequencies in the deliver*insur cross-tabulation. As I posted earlier, I was able to get convergence when I treated insurance as binary instead of categorical, using the iia option*, which is good enough for me!

                *I did not get convergence for binary insurance without the iia option.

                Code:
                Fitting full model.
                
                Likelihoods for 5014 observations involve cumulative normal distributions above dimension 2.
                Using ghk2() to simulate them. Settings:
                    Sequence type = halton
                    Number of draws per observation = 142
                    Include antithetic draws = no
                    Scramble = no
                    Prime bases = 2 3 5 7 11 13 17 19
                Each observation gets different draws, so changing the order of observations in the data set would change the results.
                
                Iteration 0:   log pseudolikelihood = -9031.2868  (not concave)
                Iteration 1:   log pseudolikelihood = -8578.0982  (not concave)
                ...
                Iteration 89:  log pseudolikelihood = -8468.8393  (not concave)
                Iteration 90:  log pseudolikelihood = -8468.5761  (not concave)
                cannot compute an improvement -- discontinuous region encountered
                convergence not achieved
                convergence not achieved
                r(430);

                Going back to the output of the model that did converge, does the missing overall F statistic
                Code:
                Mixed-process regression
                
                Number of strata   =         1                  Number of obs      =      5014
                Number of PSUs     =      1278                  Population size    = 4175.5248
                                                                Design df          =      1277
                                                                F(   0,   1277)    =         .
                                                                Prob > F           =         .
                mean that I need to make my model more parsimonious?

                Comment

                Working...
                X