I have generated the following model with SEM at the moment:
sem (csp2012 -> csp2013) (csp2012 -> csrrep2012) (csp2012 -> csrrep2013) (csp2013 -> csp2014) (csp2013 -> csrrep2013) (csp2013 -> csrrep2014) (csp2014 ->
> csrrep2014) (csrrep2012 -> csrrep2013) (csrrep2012 -> roa2012) (csrrep2012 -> roa2013) (csrrep2013 -> csrrep2014) (csrrep2013 -> roa2013) (csrrep2013 ->
> roa2014) (csrrep2014 -> roa2014) (roa2012 -> roa2013) (roa2013 -> roa2014), nocapslatent
(47 observations with missing values excluded;
specify option 'method(mlmv)' to use all observations)
Endogenous variables
Observed: csp2013 csrrep2012 csrrep2013 csp2014 csrrep2014 roa2012 roa2013 roa2014
Exogenous variables
Observed: csp2012
Fitting target model:
Iteration 0: log likelihood = -1409.5922
Iteration 1: log likelihood = -1409.5922
Structural equation model Number of obs = 59
Estimation method = ml
Log likelihood = -1409.5922
---------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
Structural |
csp2013 <- |
csp2012 | .8952065 .0538061 16.64 0.000 .7897486 1.000664
_cons | 4.812915 2.67275 1.80 0.072 -.4255786 10.05141
--------------+----------------------------------------------------------------
csrrep2012 <- |
csp2012 | .0293492 .0244935 1.20 0.231 -.0186571 .0773555
_cons | 66.6809 1.216683 54.81 0.000 64.29625 69.06556
--------------+----------------------------------------------------------------
csrrep2013 <- |
csp2013 | -.0384826 .0226693 -1.70 0.090 -.0829137 .0059485
csrrep2012 | .9794071 .0497989 19.67 0.000 .881803 1.077011
csp2012 | .0315363 .0222354 1.42 0.156 -.0120442 .0751168
_cons | -.2143459 3.342937 -0.06 0.949 -6.766383 6.337691
--------------+----------------------------------------------------------------
csp2014 <- |
csp2013 | .7961412 .0864879 9.21 0.000 .6266279 .9656544
_cons | 6.387988 4.27547 1.49 0.135 -1.991779 14.76775
--------------+----------------------------------------------------------------
csrrep2014 <- |
csp2013 | .0238833 .0139535 1.71 0.087 -.003465 .0512316
csrrep2013 | .830931 .0444756 18.68 0.000 .7437604 .9181015
csp2014 | -.0189221 .0133641 -1.42 0.157 -.0451154 .0072711
_cons | 11.23263 2.92878 3.84 0.000 5.49233 16.97294
--------------+----------------------------------------------------------------
roa2012 <- |
csrrep2012 | 1.034393 .3241771 3.19 0.001 .3990179 1.669769
_cons | -64.35061 22.08696 -2.91 0.004 -107.6403 -21.06097
--------------+----------------------------------------------------------------
roa2013 <- |
csrrep2012 | .0134556 .3444018 0.04 0.969 -.6615595 .6884706
csrrep2013 | .1792114 .3208322 0.56 0.576 -.4496082 .808031
roa2012 | .7536004 .0496173 15.19 0.000 .6563522 .8508485
_cons | -11.66387 8.920036 -1.31 0.191 -29.14682 5.819076
--------------+----------------------------------------------------------------
roa2014 <- |
csrrep2013 | .1854684 .3669558 0.51 0.613 -.5337517 .9046886
csrrep2014 | -.0118446 .4074981 -0.03 0.977 -.8105263 .786837
roa2013 | .588486 .0683561 8.61 0.000 .4545104 .7224615
_cons | -8.877053 10.91728 -0.81 0.416 -30.27453 12.52043
----------------+----------------------------------------------------------------
Variance |
e.csp2013 | 31.32861 5.768065 21.83847 44.94279
e.csrrep2012 | 6.492016 1.195277 4.525439 9.313191
e.csrrep2013 | .9390427 .1728918 .6545856 1.347114
e.csp2014 | 78.69509 14.48894 54.85658 112.8929
e.csrrep2014 | .8241646 .151741 .5745067 1.182314
e.roa2012 | 41.2324 7.5915 28.74218 59.15038
e.roa2013 | 5.868479 1.080475 4.090785 8.41869
e.roa2014 | 8.305627 1.52919 5.789666 11.91493
---------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(20) = 66.25, Prob > chi2 = 0.0000
I would like to ask where I can add my covariates? For example if you have the visual version of the model, can I add a row with 3 observed (or latent) variables that are under y1 y2 and y3 and have paths with y1 y2 and y3?
sem (csp2012 -> csp2013) (csp2012 -> csrrep2012) (csp2012 -> csrrep2013) (csp2013 -> csp2014) (csp2013 -> csrrep2013) (csp2013 -> csrrep2014) (csp2014 ->
> csrrep2014) (csrrep2012 -> csrrep2013) (csrrep2012 -> roa2012) (csrrep2012 -> roa2013) (csrrep2013 -> csrrep2014) (csrrep2013 -> roa2013) (csrrep2013 ->
> roa2014) (csrrep2014 -> roa2014) (roa2012 -> roa2013) (roa2013 -> roa2014), nocapslatent
(47 observations with missing values excluded;
specify option 'method(mlmv)' to use all observations)
Endogenous variables
Observed: csp2013 csrrep2012 csrrep2013 csp2014 csrrep2014 roa2012 roa2013 roa2014
Exogenous variables
Observed: csp2012
Fitting target model:
Iteration 0: log likelihood = -1409.5922
Iteration 1: log likelihood = -1409.5922
Structural equation model Number of obs = 59
Estimation method = ml
Log likelihood = -1409.5922
---------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
Structural |
csp2013 <- |
csp2012 | .8952065 .0538061 16.64 0.000 .7897486 1.000664
_cons | 4.812915 2.67275 1.80 0.072 -.4255786 10.05141
--------------+----------------------------------------------------------------
csrrep2012 <- |
csp2012 | .0293492 .0244935 1.20 0.231 -.0186571 .0773555
_cons | 66.6809 1.216683 54.81 0.000 64.29625 69.06556
--------------+----------------------------------------------------------------
csrrep2013 <- |
csp2013 | -.0384826 .0226693 -1.70 0.090 -.0829137 .0059485
csrrep2012 | .9794071 .0497989 19.67 0.000 .881803 1.077011
csp2012 | .0315363 .0222354 1.42 0.156 -.0120442 .0751168
_cons | -.2143459 3.342937 -0.06 0.949 -6.766383 6.337691
--------------+----------------------------------------------------------------
csp2014 <- |
csp2013 | .7961412 .0864879 9.21 0.000 .6266279 .9656544
_cons | 6.387988 4.27547 1.49 0.135 -1.991779 14.76775
--------------+----------------------------------------------------------------
csrrep2014 <- |
csp2013 | .0238833 .0139535 1.71 0.087 -.003465 .0512316
csrrep2013 | .830931 .0444756 18.68 0.000 .7437604 .9181015
csp2014 | -.0189221 .0133641 -1.42 0.157 -.0451154 .0072711
_cons | 11.23263 2.92878 3.84 0.000 5.49233 16.97294
--------------+----------------------------------------------------------------
roa2012 <- |
csrrep2012 | 1.034393 .3241771 3.19 0.001 .3990179 1.669769
_cons | -64.35061 22.08696 -2.91 0.004 -107.6403 -21.06097
--------------+----------------------------------------------------------------
roa2013 <- |
csrrep2012 | .0134556 .3444018 0.04 0.969 -.6615595 .6884706
csrrep2013 | .1792114 .3208322 0.56 0.576 -.4496082 .808031
roa2012 | .7536004 .0496173 15.19 0.000 .6563522 .8508485
_cons | -11.66387 8.920036 -1.31 0.191 -29.14682 5.819076
--------------+----------------------------------------------------------------
roa2014 <- |
csrrep2013 | .1854684 .3669558 0.51 0.613 -.5337517 .9046886
csrrep2014 | -.0118446 .4074981 -0.03 0.977 -.8105263 .786837
roa2013 | .588486 .0683561 8.61 0.000 .4545104 .7224615
_cons | -8.877053 10.91728 -0.81 0.416 -30.27453 12.52043
----------------+----------------------------------------------------------------
Variance |
e.csp2013 | 31.32861 5.768065 21.83847 44.94279
e.csrrep2012 | 6.492016 1.195277 4.525439 9.313191
e.csrrep2013 | .9390427 .1728918 .6545856 1.347114
e.csp2014 | 78.69509 14.48894 54.85658 112.8929
e.csrrep2014 | .8241646 .151741 .5745067 1.182314
e.roa2012 | 41.2324 7.5915 28.74218 59.15038
e.roa2013 | 5.868479 1.080475 4.090785 8.41869
e.roa2014 | 8.305627 1.52919 5.789666 11.91493
---------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(20) = 66.25, Prob > chi2 = 0.0000
I would like to ask where I can add my covariates? For example if you have the visual version of the model, can I add a row with 3 observed (or latent) variables that are under y1 y2 and y3 and have paths with y1 y2 and y3?
Comment