Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Difference in IRR for same variable in poisson

    Hello everyone,
    When I use the command : poisson glioma_cases i.sex, exposure(pop) irr, I obtained IRR for male 1.248(95% CI 1.02-1.29)
    Then I again repeat poisson glioma_cases i.AgeGroup i.sex, exposure(pop) irr. Now, IRR for male is different ie. 1.33(95% CI 1.27-1.37).
    I am wondering why it is different.
    Any help would be appreciated.
    Thank you.

  • #2
    If you change the model the coefficients will usually change at least a little bit (sometimes a lot). It is also possible that the sample changed a bit too.

    FYI, it is much easier to comment if you include the actual code and output using code tags. See pt. 12 of the FAQ.
    -------------------------------------------
    Richard Williams, Notre Dame Dept of Sociology
    StataNow Version: 19.5 MP (2 processor)

    EMAIL: [email protected]
    WWW: https://www3.nd.edu/~rwilliam

    Comment


    • #3
      Mithila:
      is -i.AgeGroup- in your second model that makes the difference?
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Hello Carlo,
        No, it is similar for i.AgeGroup

        Comment


        • #5
          Mithila:
          I meant that, as per your post, it seems that -i.AgeGroup- was not included among your 1st model predictors.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Is it making the difference?
            But when look for i.AgeGroup alone as poisson glioma_cases i.AgeGroup, exposure(pop) irr and again as poisson glioma_cases i.AgeGroup i.sex, exposure(pop) irr. The results are similar for i. AgeGroup.

            Comment


            • #7
              Mithila:
              as per Richard's suggestion (that echoes a FAQ), please provide the list with what you typed and what Stata gave you back. Thanks.
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment


              • #8
                Stata output looks like this with command poisson glioma_cases i.sex, exposure(pop) irr

                Iteration 0: log likelihood = -5676.9229
                Iteration 1: log likelihood = -5676.906
                Iteration 2: log likelihood = -5676.906

                Poisson regression Number of obs = 1584
                LR chi2(1) = 129.25
                Prob > chi2 = 0.0000
                Log likelihood = -5676.906 Pseudo R2 = 0.0113


                glioma_cases IRR Std. Err. z P>z [95% Conf. Interval]

                2.sex 1.24828 .0243999 11.35 0.000 1.201362 1.297031
                _cons .0000425 6.12e-07 -699.49 0.000 .0000414 .0000438

                ln(pop) 1 (exposure)




                Then, I repeat as
                poisson glioma_cases i.AgeGroup i.sex, exposure(pop) irr

                Iteration 0: log likelihood = -3742.0483
                Iteration 1: log likelihood = -3724.2132
                Iteration 2: log likelihood = -3724.117
                Iteration 3: log likelihood = -3724.117

                Poisson regression Number of obs = 1584
                LR chi2(18) = 4034.83
                Prob > chi2 = 0.0000
                Log likelihood = -3724.117 Pseudo R2 = 0.3514

                ------------------------------------------------------------------------------
                glioma_cases | IRR Std. Err. z P>|z| [95% Conf. Interval]
                -------------+----------------------------------------------------------------
                AgeGroup |
                2 | .9394085 .0816199 -0.72 0.472 .7923159 1.113809
                3 | .7610622 .069181 -3.00 0.003 .636862 .9094836
                4 | .8854272 .0764898 -1.41 0.159 .7475147 1.048784
                5 | .9470672 .0798423 -0.65 0.519 .8028241 1.117226
                6 | 1.583218 .1195471 6.08 0.000 1.365423 1.835752
                7 | 2.06967 .1499456 10.04 0.000 1.795694 2.385447
                8 | 2.171547 .1566763 10.75 0.000 1.885191 2.5014
                9 | 2.354508 .1683461 11.98 0.000 2.046631 2.708698
                10 | 2.938874 .2050536 15.45 0.000 2.563246 3.369549
                11 | 3.632972 .2492939 18.80 0.000 3.175797 4.15596

                |
                2.sex | 1.325147 .026037 14.33 0.000 1.275085 1.377174
                _cons | .000017 1.05e-06 -177.09 0.000 .000015 .0000191
                ln(pop) | 1 (exposure)

                We could notice IRR for sex is different from the previous one.

                Comment


                • #9
                  This is perfectly normal, expected behavior in regression models. The first model is giving you a crude estimate of the sex IRR; the second is giving you an estimate adjusted (coarsely perhaps) for age. There is no reason to expect the results to be the same.

                  Comment


                  • #10
                    Thank you. I have queries again.
                    I have time series data in following format for years 1970-2013.
                    dg_y AgeGroup sex pop glioma_cases
                    1970 0-4 female 166273 5
                    1970 5-9 female 186729 5
                    1970 10-14 female 194975 4
                    1970 15-19 female 205481 1
                    1970 20-24 female 216751 5

                    dg_y AgeGroup sex pop glioma_cases
                    1971 0-4 female 160437 2
                    1971 5-9 female 184936 6
                    1971 10-14 female 191684 2
                    1971 15-19 female 206166 2
                    1971 20-24 female 214936 0

                    dg_y AgeGroup sex pop glioma_cases
                    1970 0-4 male 173171 5
                    1970 5-9 male 194431 6
                    1970 10-14 male 202971 3
                    1970 15-19 male 215689 3
                    1970 20-24 male 228348 4

                    dg_y AgeGroup sex pop glioma_cases
                    1971 0-4 male 167275 1
                    1971 5-9 male 192445 4
                    1971 10-14 male 199232 4
                    1971 15-19 male 215563 1
                    1971 20-24 male 227202 2


                    Now, I would like to calculate age adjusted incidence rates for 1970-2013.

                    I used :
                    poisson glioma_cases i.dg_y i.AgeGroup, ir

                    Iteration 0: log likelihood = -3882.3336
                    Iteration 1: log likelihood = -3872.3088
                    Iteration 2: log likelihood = -3872.1944
                    Iteration 3: log likelihood = -3872.1943

                    Poisson regression Number of obs = 1584
                    LR chi2(60) = 4490.95
                    Prob > chi2 = 0.0000
                    Log likelihood = -3872.1943 Pseudo R2 = 0.3670

                    ------------------------------------------------------------------------------
                    glioma_cases | IRR Std. Err. z P>|z| [95% Conf. Interval]
                    -------------+----------------------------------------------------------------
                    dg_y |
                    1971 | .9565217 .1164529 -0.37 0.715 .7534671 1.214298
                    1972 | 1.065217 .126259 0.53 0.594 .8443962 1.343786
                    1973 | 1.021739 .1223469 0.18 0.857 .8080048 1.292011
                    1974 | 1.050725 .1249564 0.42 0.677 .832263 1.326531
                    1975 | 1.043478 .1243046 0.36 0.721 .8261974 1.317902
                    1976 | 1.275362 .1450115 2.14 0.032 1.020587 1.593739
                    1977 | 1.036232 .1236524 0.30 0.766 .8201325 1.309272
                    1978 | 1.463768 .1616577 3.45 0.001 1.17887 1.817517
                    1979 | 1.384058 .1546308 2.91 0.004 1.111874 1.722871
                    1980 | 1.57971 .1718441 4.20 0.000 1.276386 1.955117


                    it takes 1970 as reference data here and others are relative risk with 1970 as reference year.

                    I want age adjusted incidence rates for all years from 1970-2013 not the incidence rate ratio.

                    I should use it in joint-point regression to see distinct change in trends and to calculate annual percentage change.



                    Comment


                    • #11
                      You can use the ibn. prefix instead of the i. prefix and add the nocons option. See: http://maartenbuis.nl/publications/ref_cat.html
                      ---------------------------------
                      Maarten L. Buis
                      University of Konstanz
                      Department of history and sociology
                      box 40
                      78457 Konstanz
                      Germany
                      http://www.maartenbuis.nl
                      ---------------------------------

                      Comment


                      • #12
                        Thank you Maarten,
                        I used ibn.prefix as
                        poisson glioma_cases ibn.dg_y ibn.AgeGroup, noconstant
                        note: 18.AgeGroup omitted because of collinearity

                        Iteration 0: log likelihood = -4712.7613
                        Iteration 1: log likelihood = -3879.0241
                        Iteration 2: log likelihood = -3872.1993
                        Iteration 3: log likelihood = -3872.1943
                        Iteration 4: log likelihood = -3872.1943

                        Poisson regression Number of obs = 1584
                        Wald chi2(61) = 50379.35
                        Log likelihood = -3872.1943 Prob > chi2 = 0.0000

                        ------------------------------------------------------------------------------
                        glioma_cases | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                        -------------+----------------------------------------------------------------
                        dg_y |
                        1970 | -.9515735 .1552439 -6.13 0.000 -1.255846 -.6473009
                        1971 | -.9960252 .1563012 -6.37 0.000 -1.30237 -.6896805
                        1972 | -.8883946 .1538084 -5.78 0.000 -1.189853 -.5869356
                        1973 | -.9300673 .1547466 -6.01 0.000 -1.233365 -.6267696
                        1974 | -.9020934 .1541131 -5.85 0.000 -1.20415 -.6000372


                        I got coefficient not adjusted rates. Is it possible to findout adjusted rates in someway?

                        Comment


                        • #13
                          You still need to specify the irr option.
                          ---------------------------------
                          Maarten L. Buis
                          University of Konstanz
                          Department of history and sociology
                          box 40
                          78457 Konstanz
                          Germany
                          http://www.maartenbuis.nl
                          ---------------------------------

                          Comment


                          • #14
                            As an aside, please use code tags when posting output. It makes things much easier to read. See pt 12 of the FAQ
                            -------------------------------------------
                            Richard Williams, Notre Dame Dept of Sociology
                            StataNow Version: 19.5 MP (2 processor)

                            EMAIL: [email protected]
                            WWW: https://www3.nd.edu/~rwilliam

                            Comment


                            • #15
                              In response to #12, adding the -irr- option will give you the incidence rate ratios for each year, relative to whatever is your reference (omitted) year. To get the adjusted rates themselves in each year, you can run the -margins- command with the -predict(ir)- option after -poisson-:
                              Code:
                              margins dg_y, predict(ir)

                              Comment

                              Working...
                              X