I ran a Cox model with TVC in Stata 13. The outcome variable was "EBFPLUS" (exclusive and predominant breastfeeding) and the main exposure variable is "rand" (trial arm). I got hazard ratios too big or too small. Is that normal? Otherwise, what does it imply for my model?
Please see command and output below.
Thanks for your help!
Best Regards
Eric
Please see command and output below.
Thanks for your help!
Best Regards
Eric
Code:
use NCOX1_W22, clear . drop if EBFPLUS_exit>=. (90 observations deleted) . keep if country==3 (5628 observations deleted) . stset EBFPLUS_exit, failure(EBFPLUS_dth) origin(date_csdi) enter(date_csdi) scale(7) failure event: EBFPLUS_dth != 0 & EBFPLUS_dth < . obs. time interval: (origin, EBFPLUS_exit] enter on or after: time date_csdi exit on or before: failure t for analysis: (time-origin)/7 origin: time date_csdi ------------------------------------------------------------------------------ 1632 total observations 0 exclusions ------------------------------------------------------------------------------ 1632 observations remaining, representing 96 failures in single-record/single-failure data 30039.43 total analysis time at risk and under observation at risk from t = 0 earliest observed entry t = 0 last observed exit t = 22.71429 . . stcox i.rand i.tertile i.agegroup i.educ i.marital i.occup i.parity i.deliv i.bfinitime, /// > tvc(rand tertile agegroup educ marital occup parity deliv bfinitime) texp( ln(_t) ) failure _d: EBFPLUS_dth analysis time _t: (EBFPLUS_exit-origin)/7 origin: time date_csdi enter on or after: time date_csdi Iteration 0: log likelihood = -657.09909 Iteration 1: log likelihood = -647.11305 Iteration 2: log likelihood = -618.76367 Iteration 3: log likelihood = -587.38412 Iteration 4: log likelihood = -583.3244 Iteration 5: log likelihood = -559.65771 Iteration 6: log likelihood = -557.18193 Iteration 7: log likelihood = -556.15539 Iteration 8: log likelihood = -555.82087 Iteration 9: log likelihood = -555.77453 Iteration 10: log likelihood = -555.77145 Iteration 11: log likelihood = -555.77108 Iteration 12: log likelihood = -555.77095 Iteration 13: log likelihood = -555.7709 Iteration 14: log likelihood = -555.77088 Iteration 15: log likelihood = -555.77087 Iteration 16: log likelihood = -555.77087 Iteration 17: log likelihood = -555.77087 Iteration 18: log likelihood = -555.77087 Iteration 19: log likelihood = -555.77087 Iteration 20: log likelihood = -555.77087 Iteration 21: log likelihood = -555.77087 Iteration 22: log likelihood = -555.77087 Iteration 23: log likelihood = -555.77087 Iteration 24: log likelihood = -555.77087 Iteration 25: log likelihood = -555.77087 Iteration 26: log likelihood = -555.77087 Iteration 27: log likelihood = -555.77087 Iteration 28: log likelihood = -555.77087 Iteration 29: log likelihood = -555.77087 Iteration 30: log likelihood = -555.77087 Iteration 31: log likelihood = -555.77087 Iteration 32: log likelihood = -555.77087 Refining estimates: Iteration 0: log likelihood = -555.77087 Iteration 1: log likelihood = -555.77087 Cox regression -- Breslow method for ties No. of subjects = 1632 Number of obs = 1632 No. of failures = 96 Time at risk = 30039.42857 LR chi2(22) = 202.66 Log likelihood = -555.77087 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- main | 1.rand | .0000863 .0002745 -2.94 0.003 1.70e-07 .0439029 | tertile | 2 | 10935.6 30435.3 3.34 0.001 46.7552 2557734 3 | 1.96e+09 1.05e+10 3.98 0.000 52146.87 7.37e+13 | agegroup | 3 | 25992.19 75550.56 3.50 0.000 87.23405 7744612 5 | 8.15e+07 4.55e+08 3.26 0.001 1443.403 4.60e+12 |
Comment